The regularized asymptotics of a solution of the Cauchy problem in the presence of a weak turning point of the limit operator
Sbornik. Mathematics, Tome 212 (2021) no. 10, pp. 1415-1435 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

An asymptotic solution of the linear Cauchy problem in the presence of a ‘weak’ turning point of the limit operator is built using Lomov's regularization method. The major singularities of the problem are written out in an explicit form. Estimates are given with respect to $\varepsilon$, which characterise the behaviour of the singularities as $\varepsilon\to 0$. The asymptotic convergence of the regularized series is proved. The results of the work are illustrated by an example. Bibliography: 8 titles.
Keywords: singular Cauchy problem, asymptotic series, regularization method, turning point.
@article{SM_2021_212_10_a2,
     author = {A. G. Eliseev},
     title = {The regularized asymptotics of a~solution of the {Cauchy} problem in the presence of a~weak turning point of the limit operator},
     journal = {Sbornik. Mathematics},
     pages = {1415--1435},
     year = {2021},
     volume = {212},
     number = {10},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2021_212_10_a2/}
}
TY  - JOUR
AU  - A. G. Eliseev
TI  - The regularized asymptotics of a solution of the Cauchy problem in the presence of a weak turning point of the limit operator
JO  - Sbornik. Mathematics
PY  - 2021
SP  - 1415
EP  - 1435
VL  - 212
IS  - 10
UR  - http://geodesic.mathdoc.fr/item/SM_2021_212_10_a2/
LA  - en
ID  - SM_2021_212_10_a2
ER  - 
%0 Journal Article
%A A. G. Eliseev
%T The regularized asymptotics of a solution of the Cauchy problem in the presence of a weak turning point of the limit operator
%J Sbornik. Mathematics
%D 2021
%P 1415-1435
%V 212
%N 10
%U http://geodesic.mathdoc.fr/item/SM_2021_212_10_a2/
%G en
%F SM_2021_212_10_a2
A. G. Eliseev. The regularized asymptotics of a solution of the Cauchy problem in the presence of a weak turning point of the limit operator. Sbornik. Mathematics, Tome 212 (2021) no. 10, pp. 1415-1435. http://geodesic.mathdoc.fr/item/SM_2021_212_10_a2/

[1] S. A. Lomov, Introduction to the general theory of singular perturbations, Transl. Math. Monogr., 112, Amer. Math. Soc., Providence, RI, 1992, xviii+375 pp. | MR | MR | Zbl | Zbl

[2] A. A. Bobodzhanov, V. F. Safonov, “Regularized asymptotics of solutions to integro-differential partial differential equations with rapidly varying kernels”, Ufa Math. J., 10:2 (2018), 3–13 | DOI | MR | Zbl

[3] V. F. Butuzov, N. N. Nefedov, K. R. Schneider, “Singularly perturbed problems in case of exchange of stabilities”, J. Math. Sci. (N.Y.), 121:1 (2004), 1973–2079 | DOI | MR | Zbl

[4] J. Liouville, “Second Mémoire sur le développement des fonctions ou parties de fonctions en séries dont les divers termes sont assujétis à satisfaire à une même équation différentielle du second ordre, contenant un paramètre variable”, J. Math. Pure Appl., 2 (1837), 16–35

[5] A. G. Eliseev, S. A. Lomov, “Theory of singular perturbations in the case of spectral singularities of the limit operator”, Math. USSR-Sb., 59:2 (1988), 541–555 | DOI | MR | Zbl

[6] A. G. Eliseev, T. A. Ratnikova, “Singulyarno vozmuschennaya zadacha Koshi pri nalichii ratsionalnoi «prostoi» tochki povorota u predelnogo operatora”, Differentsialnye uravneniya i protsessy upravleniya, 2019, no. 3, 63–73 | MR | Zbl

[7] A. G. Eliseev, “Regulyarizovannoe reshenie singulyarno vozmuschennoi zadachi Koshi pri nalichii irratsionalnoi prostoi tochki povorota”, Differentsialnye uravneniya i protsessy upravleniya, 2020, no. 2, 15–32 | MR | Zbl

[8] A. G. Eliseev, P. V. Kirichenko, “Reshenie singulyarno vozmuschennoi zadachi Koshi pri nalichii «slaboi» tochki povorota u predelnogo operatora”, Sib. elektron. matem. izv., 17 (2020), 51–60 | DOI | MR | Zbl