The degrees of maps between $(n-1)$-connected $(2n+1)$-dimensional manifolds or Poincaré complexes and their applications
Sbornik. Mathematics, Tome 212 (2021) no. 10, pp. 1360-1414 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

In this paper, using homotopy theoretical methods we study the degrees of maps between $(n-1)$-connected $(2n+1)$-dimensional Poincaré complexes. Necessary and sufficient algebraic conditions for the existence of mapping degrees between such Poincaré complexes are established. These conditions allow us, up to homotopy, to construct explicitly all maps with a given degree. As an application of mapping degrees, we consider maps between ${(n-1)}$-connected $(2n+1)$-dimensional Poincaré complexes with degree $\pm 1$, and give a sufficient condition for these to be homotopy equivalences. This resolves a homotopy theoretical analogue of Novikov's question: when is a map of degree $1$ between manifolds a homeomorphism? For low $n$, we classify, up to homotopy, torsion free $(n-1)$-connected $(2n+1)$-dimensional Poincaré complexes. Bibliography: 29 titles.
Keywords: mapping degree, highly connected manifolds and Poincaré complexes, homotopy theory
Mots-clés : classification of Poincaré complexes.
@article{SM_2021_212_10_a1,
     author = {J. Grbi\'c and A. Vu\v{c}i\'c},
     title = {The degrees of maps between $(n-1)$-connected $(2n+1)$-dimensional manifolds or {Poincar\'e} complexes and their applications},
     journal = {Sbornik. Mathematics},
     pages = {1360--1414},
     year = {2021},
     volume = {212},
     number = {10},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2021_212_10_a1/}
}
TY  - JOUR
AU  - J. Grbić
AU  - A. Vučić
TI  - The degrees of maps between $(n-1)$-connected $(2n+1)$-dimensional manifolds or Poincaré complexes and their applications
JO  - Sbornik. Mathematics
PY  - 2021
SP  - 1360
EP  - 1414
VL  - 212
IS  - 10
UR  - http://geodesic.mathdoc.fr/item/SM_2021_212_10_a1/
LA  - en
ID  - SM_2021_212_10_a1
ER  - 
%0 Journal Article
%A J. Grbić
%A A. Vučić
%T The degrees of maps between $(n-1)$-connected $(2n+1)$-dimensional manifolds or Poincaré complexes and their applications
%J Sbornik. Mathematics
%D 2021
%P 1360-1414
%V 212
%N 10
%U http://geodesic.mathdoc.fr/item/SM_2021_212_10_a1/
%G en
%F SM_2021_212_10_a1
J. Grbić; A. Vučić. The degrees of maps between $(n-1)$-connected $(2n+1)$-dimensional manifolds or Poincaré complexes and their applications. Sbornik. Mathematics, Tome 212 (2021) no. 10, pp. 1360-1414. http://geodesic.mathdoc.fr/item/SM_2021_212_10_a1/

[1] H.-J. Baues, “The degree of maps between certain 6-manifolds”, Compositio Math., 110:1 (1998), 51–64 | DOI | MR | Zbl

[2] P. Beben, Jie Wu, “The homotopy type of a Poincaré duality complex after looping”, Proc. Edinb. Math. Soc. (2), 58:3 (2015), 581–616 | DOI | MR | Zbl

[3] L. E. J. Brouwer, “Beweis der Invarianz der Dimensionenzahl”, Math. Ann., 70:2 (1911), 161–165 | DOI | MR | Zbl

[4] L. E. J. Brouwer, “Über Abbildung von Mannigfaltigkeiten”, Math. Ann., 71:1 (1911), 97–115 | DOI | MR | Zbl

[5] F. R. Cohen, J. C. Moore, J. A. Neisendorfer, “Torsion in homotopy groups”, Ann. of Math. (2), 109:1 (1979), 121–168 | DOI | MR | Zbl

[6] Haibao Duan, “Self-maps of the Grassmannian of complex structures”, Compositio Math., 132:2 (2002), 159–175 | DOI | MR | Zbl

[7] Haibao Duan, Shicheng Wang, “The degrees of maps between manifolds”, Math. Z., 244:1 (2003), 67–89 | DOI | MR | Zbl

[8] Hai Bao Duan, Shi Cheng Wang, “Non-zero degree maps between $2n$-manifolds”, Acta Math. Sin. (Engl. Ser.), 20:1 (2004), 1–14 | DOI | MR | Zbl

[9] A. L. Edmonds, “Deformation of maps to branched coverings in dimension two”, Ann. of Math. (2), 110:1 (1979), 113–125 | DOI | MR | Zbl

[10] M. H. Freedman, “The topology of four-dimensional manifolds”, J. Differential Geometry, 17:3 (1982), 337–453 | DOI | MR | Zbl

[11] M. Golasiński, J. Mukai, “Gottlieb groups of spheres”, Topology, 47:6 (2008), 399–430 | DOI | MR | Zbl

[12] C. Hayat-Legrand, Shicheng Wang, H. Zieschang, “Minimal Seifert manifolds”, Math. Ann., 308:4 (1997), 673–700 | DOI | MR | Zbl

[13] M. Hoffman, “Endomorphisms of the cohomology of complex {G}rassmannians”, Trans. Amer. Math. Soc., 281:2 (1984), 745–760 | DOI | MR | Zbl

[14] I. M. James, “Reduced product spaces”, Ann. of Math. (2), 62:1 (1955), 170–197 | DOI | MR | Zbl

[15] C. A. Mcgibbon, “Endomorphisms of the cohomology of complex Grassmannians”, Trans. Amer. Math. Soc., 281:2 (1984), 745–760 | DOI | MR | Zbl

[16] J. W. Milnor, Topology from the differentiable viewpoint, The Univ. Press of Virginia, Charlottesville, VA, 1965, ix+65 pp. | MR | MR | Zbl | Zbl

[17] J. Mukai, K. Yamaguchi, “Homotopy classification of twisted complex projective spaces of dimension 4”, J. Math. Soc. Japan, 57:2 (2005), 461–489 | DOI | MR | Zbl

[18] J. Neisendorfer, Primary homotopy theory, Mem. Amer. Math. Soc., 25, no. 232, Amer. Math. Soc., Providence, RI, 1980, iv+67 pp. | DOI | MR | Zbl

[19] J. Neisendorfer, Algebraic methods in unstable homotopy theory, New Math. Monogr., 12, Cambridge Univ. Press, Cambridge, 2010, xx+554 pp. | DOI | MR | Zbl

[20] Yongwu Rong, “Maps between Seifert fibered spaces of infinite $\pi_1$”, Pacific J. Math., 160:1 (1993), 143–154 | DOI | MR | Zbl

[21] S. P. Novikov, Homotopically equivalent smooth manifolds. I, 97 pp. http://www.mi.ras.ru/~snovikov/10.pdf | MR | Zbl

[22] S. Sasao, “On homotopy type of certain complexes”, Topology, 3:2 (1965), 97–102 | DOI | MR | Zbl

[23] N. Steenrod, The topology of fibre bundles, Princeton Math. Ser., 14, Princeton Univ. Press, Princeton, NJ, 1951, viii+224 pp. | MR | Zbl

[24] T. Somma, “Maps between Seifert fibered spaces of infinite $\pi_1$”, Pacific J. Math., 160 (1993), 143–154 | DOI | MR

[25] H. Toda, Composition methods in homotopy groups of spheres, Ann. of Math. Stud., 49, Princeton Univ. Press, Princeton, NJ, 1962, v+193 pp. | DOI | MR | MR | Zbl | Zbl

[26] C. T. C. Wall, “Poincaré complexes. I”, Ann. of Math. (2), 86 (1967), 213–245 | DOI | MR | Zbl

[27] C. T. C. Wall, “Classification of $(n-1)$-connected $2n$-manifolds”, Ann. of Math. (2), 75 (1962), 163–189 | DOI | MR | Zbl

[28] Shicheng Wang, “The $\pi_1$-injectivity of self-maps of nonzero degree on 3-manifolds”, Math. Ann., 297:1 (1993), 171–189 | DOI | MR | Zbl

[29] G. W. Whitehead, Elements of homotopy theory, Grad. Texts in Math., 61, Springer-Verlag, New York–Berlin, 1978, xxi+744 pp. | DOI | MR | Zbl