Mots-clés : classification of Poincaré complexes.
@article{SM_2021_212_10_a1,
author = {J. Grbi\'c and A. Vu\v{c}i\'c},
title = {The degrees of maps between $(n-1)$-connected $(2n+1)$-dimensional manifolds or {Poincar\'e} complexes and their applications},
journal = {Sbornik. Mathematics},
pages = {1360--1414},
year = {2021},
volume = {212},
number = {10},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SM_2021_212_10_a1/}
}
TY - JOUR AU - J. Grbić AU - A. Vučić TI - The degrees of maps between $(n-1)$-connected $(2n+1)$-dimensional manifolds or Poincaré complexes and their applications JO - Sbornik. Mathematics PY - 2021 SP - 1360 EP - 1414 VL - 212 IS - 10 UR - http://geodesic.mathdoc.fr/item/SM_2021_212_10_a1/ LA - en ID - SM_2021_212_10_a1 ER -
%0 Journal Article %A J. Grbić %A A. Vučić %T The degrees of maps between $(n-1)$-connected $(2n+1)$-dimensional manifolds or Poincaré complexes and their applications %J Sbornik. Mathematics %D 2021 %P 1360-1414 %V 212 %N 10 %U http://geodesic.mathdoc.fr/item/SM_2021_212_10_a1/ %G en %F SM_2021_212_10_a1
J. Grbić; A. Vučić. The degrees of maps between $(n-1)$-connected $(2n+1)$-dimensional manifolds or Poincaré complexes and their applications. Sbornik. Mathematics, Tome 212 (2021) no. 10, pp. 1360-1414. http://geodesic.mathdoc.fr/item/SM_2021_212_10_a1/
[1] H.-J. Baues, “The degree of maps between certain 6-manifolds”, Compositio Math., 110:1 (1998), 51–64 | DOI | MR | Zbl
[2] P. Beben, Jie Wu, “The homotopy type of a Poincaré duality complex after looping”, Proc. Edinb. Math. Soc. (2), 58:3 (2015), 581–616 | DOI | MR | Zbl
[3] L. E. J. Brouwer, “Beweis der Invarianz der Dimensionenzahl”, Math. Ann., 70:2 (1911), 161–165 | DOI | MR | Zbl
[4] L. E. J. Brouwer, “Über Abbildung von Mannigfaltigkeiten”, Math. Ann., 71:1 (1911), 97–115 | DOI | MR | Zbl
[5] F. R. Cohen, J. C. Moore, J. A. Neisendorfer, “Torsion in homotopy groups”, Ann. of Math. (2), 109:1 (1979), 121–168 | DOI | MR | Zbl
[6] Haibao Duan, “Self-maps of the Grassmannian of complex structures”, Compositio Math., 132:2 (2002), 159–175 | DOI | MR | Zbl
[7] Haibao Duan, Shicheng Wang, “The degrees of maps between manifolds”, Math. Z., 244:1 (2003), 67–89 | DOI | MR | Zbl
[8] Hai Bao Duan, Shi Cheng Wang, “Non-zero degree maps between $2n$-manifolds”, Acta Math. Sin. (Engl. Ser.), 20:1 (2004), 1–14 | DOI | MR | Zbl
[9] A. L. Edmonds, “Deformation of maps to branched coverings in dimension two”, Ann. of Math. (2), 110:1 (1979), 113–125 | DOI | MR | Zbl
[10] M. H. Freedman, “The topology of four-dimensional manifolds”, J. Differential Geometry, 17:3 (1982), 337–453 | DOI | MR | Zbl
[11] M. Golasiński, J. Mukai, “Gottlieb groups of spheres”, Topology, 47:6 (2008), 399–430 | DOI | MR | Zbl
[12] C. Hayat-Legrand, Shicheng Wang, H. Zieschang, “Minimal Seifert manifolds”, Math. Ann., 308:4 (1997), 673–700 | DOI | MR | Zbl
[13] M. Hoffman, “Endomorphisms of the cohomology of complex {G}rassmannians”, Trans. Amer. Math. Soc., 281:2 (1984), 745–760 | DOI | MR | Zbl
[14] I. M. James, “Reduced product spaces”, Ann. of Math. (2), 62:1 (1955), 170–197 | DOI | MR | Zbl
[15] C. A. Mcgibbon, “Endomorphisms of the cohomology of complex Grassmannians”, Trans. Amer. Math. Soc., 281:2 (1984), 745–760 | DOI | MR | Zbl
[16] J. W. Milnor, Topology from the differentiable viewpoint, The Univ. Press of Virginia, Charlottesville, VA, 1965, ix+65 pp. | MR | MR | Zbl | Zbl
[17] J. Mukai, K. Yamaguchi, “Homotopy classification of twisted complex projective spaces of dimension 4”, J. Math. Soc. Japan, 57:2 (2005), 461–489 | DOI | MR | Zbl
[18] J. Neisendorfer, Primary homotopy theory, Mem. Amer. Math. Soc., 25, no. 232, Amer. Math. Soc., Providence, RI, 1980, iv+67 pp. | DOI | MR | Zbl
[19] J. Neisendorfer, Algebraic methods in unstable homotopy theory, New Math. Monogr., 12, Cambridge Univ. Press, Cambridge, 2010, xx+554 pp. | DOI | MR | Zbl
[20] Yongwu Rong, “Maps between Seifert fibered spaces of infinite $\pi_1$”, Pacific J. Math., 160:1 (1993), 143–154 | DOI | MR | Zbl
[21] S. P. Novikov, Homotopically equivalent smooth manifolds. I, 97 pp. http://www.mi.ras.ru/~snovikov/10.pdf | MR | Zbl
[22] S. Sasao, “On homotopy type of certain complexes”, Topology, 3:2 (1965), 97–102 | DOI | MR | Zbl
[23] N. Steenrod, The topology of fibre bundles, Princeton Math. Ser., 14, Princeton Univ. Press, Princeton, NJ, 1951, viii+224 pp. | MR | Zbl
[24] T. Somma, “Maps between Seifert fibered spaces of infinite $\pi_1$”, Pacific J. Math., 160 (1993), 143–154 | DOI | MR
[25] H. Toda, Composition methods in homotopy groups of spheres, Ann. of Math. Stud., 49, Princeton Univ. Press, Princeton, NJ, 1962, v+193 pp. | DOI | MR | MR | Zbl | Zbl
[26] C. T. C. Wall, “Poincaré complexes. I”, Ann. of Math. (2), 86 (1967), 213–245 | DOI | MR | Zbl
[27] C. T. C. Wall, “Classification of $(n-1)$-connected $2n$-manifolds”, Ann. of Math. (2), 75 (1962), 163–189 | DOI | MR | Zbl
[28] Shicheng Wang, “The $\pi_1$-injectivity of self-maps of nonzero degree on 3-manifolds”, Math. Ann., 297:1 (1993), 171–189 | DOI | MR | Zbl
[29] G. W. Whitehead, Elements of homotopy theory, Grad. Texts in Math., 61, Springer-Verlag, New York–Berlin, 1978, xxi+744 pp. | DOI | MR | Zbl