Stationary points of the Minkowski function
Sbornik. Mathematics, Tome 212 (2021) no. 10, pp. 1347-1359 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

A new theorem on the derivative of the Minkowski function is proved. Bibliography: 11 titles.
Keywords: Minkowski function, derivative.
@article{SM_2021_212_10_a0,
     author = {D. R. Gayfulin and I. D. Kan},
     title = {Stationary points of the {Minkowski} function},
     journal = {Sbornik. Mathematics},
     pages = {1347--1359},
     year = {2021},
     volume = {212},
     number = {10},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2021_212_10_a0/}
}
TY  - JOUR
AU  - D. R. Gayfulin
AU  - I. D. Kan
TI  - Stationary points of the Minkowski function
JO  - Sbornik. Mathematics
PY  - 2021
SP  - 1347
EP  - 1359
VL  - 212
IS  - 10
UR  - http://geodesic.mathdoc.fr/item/SM_2021_212_10_a0/
LA  - en
ID  - SM_2021_212_10_a0
ER  - 
%0 Journal Article
%A D. R. Gayfulin
%A I. D. Kan
%T Stationary points of the Minkowski function
%J Sbornik. Mathematics
%D 2021
%P 1347-1359
%V 212
%N 10
%U http://geodesic.mathdoc.fr/item/SM_2021_212_10_a0/
%G en
%F SM_2021_212_10_a0
D. R. Gayfulin; I. D. Kan. Stationary points of the Minkowski function. Sbornik. Mathematics, Tome 212 (2021) no. 10, pp. 1347-1359. http://geodesic.mathdoc.fr/item/SM_2021_212_10_a0/

[1] H. Minkowski, Gesammelte Abhandlungen, v. 2, B. G. Teubner, Leipzig–Berlin, 1911, iv+466 pp. | Zbl

[2] R. Salem, “On some singular monotonic functions which are strictly increasing”, Trans. Amer. Math. Soc., 53:3 (1943), 427–439 | DOI | MR | Zbl

[3] J. R. Kinney, “Note on a singular function of Minkowski”, Proc. Amer. Math. Soc., 11:5 (1960), 788–794 | DOI | MR | Zbl

[4] P. Viader, J. Paradis, L. Bibiloni, “A new light on Minkowski's $?(x)$ function”, J. Number Theory, 73:2 (1998), 212–227 | DOI | MR | Zbl

[5] J. Paradis, P. Viader, L. Bibiloni, “The derivative of Minkowski's $?(x)$ function”, J. Math. Anal. Appl., 253:1 (2001), 107–125 | DOI | MR | Zbl

[6] A. A. Dushistova, N. G. Moshchevitin, “On the derivative of the Minkowski question mark function $?(x)$”, J. Math. Sci. (N.Y.), 182:4 (2012), 463–471 | DOI | MR | Zbl

[7] A. A. Dushistova, I. D. Kan, N. G. Moshchevitin, “Differentiability of the Minkowski question mark function”, J. Math. Anal. Appl., 401:2 (2013), 774–794 | DOI | MR | Zbl

[8] I. D. Kan, “Differentiability of the Minkowski function $?(x)$. II”, Izv. Math., 83:5 (2019), 957–989 | DOI | DOI | MR | Zbl

[9] I. D. Kan, “Differentiability of the Minkowski $?(x)$-function. III”, Sb. Math., 210:8 (2019), 1148–1178 | DOI | DOI | MR | Zbl

[10] D. R. Gaifulin, I. D. Kan, “The derivative of the Minkowski function”, Izv. Math., 85:4 (2021), 621–665 | DOI | DOI | MR

[11] R. L. Graham, D. E. Knuth, O. Patashnik, Concrete mathematics. A foundation for computer science, 2nd ed., Addison-Wesley Publ. Co., Reading, MA, 1994, xiv+657 pp. | MR | Zbl