Operator $E$-norms and their use
Sbornik. Mathematics, Tome 211 (2020) no. 9, pp. 1323-1353 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We consider a family of equivalent norms (called operator $E$-norms) on the algebra $\mathfrak B(\mathscr H)$ of all bounded operators on a separable Hilbert space $\mathscr H$ induced by a positive densely defined operator $G$ on $\mathscr H$. By choosing different generating operators $G$ we can obtain the operator $E$-norms producing different topologies, in particular, the strong operator topology on bounded subsets of $\mathfrak B(\mathscr H)$. We obtain a generalised version of the Kretschmann-Schlingemann-Werner theorem, which shows that the Stinespring representation of completely positive linear maps is continuous with respect to the energy-constrained norm of complete boundedness on the set of completely positive linear maps and the operator $E$-norm on the set of Stinespring operators. The operator $E$-norms induced by a positive operator $G$ are well defined for linear operators relatively bounded with respect to the operator $\sqrt G$, and the linear space of such operators equipped with any of these norms is a Banach space. We obtain explicit relations between operator $E$-norms and the standard characteristics of $\sqrt G$-bounded operators. Operator $E$-norms allow us to obtain simple upper bounds and continuity bounds for some functions depending on $\sqrt G$-bounded operators used in applications. Bibliography: 29 titles.
Keywords: trace class operator, completely positive map, Stinespring representation, relatively bounded operator.
Mots-clés : Bures distance
@article{SM_2020_211_9_a4,
     author = {M. E. Shirokov},
     title = {Operator $E$-norms and their use},
     journal = {Sbornik. Mathematics},
     pages = {1323--1353},
     year = {2020},
     volume = {211},
     number = {9},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2020_211_9_a4/}
}
TY  - JOUR
AU  - M. E. Shirokov
TI  - Operator $E$-norms and their use
JO  - Sbornik. Mathematics
PY  - 2020
SP  - 1323
EP  - 1353
VL  - 211
IS  - 9
UR  - http://geodesic.mathdoc.fr/item/SM_2020_211_9_a4/
LA  - en
ID  - SM_2020_211_9_a4
ER  - 
%0 Journal Article
%A M. E. Shirokov
%T Operator $E$-norms and their use
%J Sbornik. Mathematics
%D 2020
%P 1323-1353
%V 211
%N 9
%U http://geodesic.mathdoc.fr/item/SM_2020_211_9_a4/
%G en
%F SM_2020_211_9_a4
M. E. Shirokov. Operator $E$-norms and their use. Sbornik. Mathematics, Tome 211 (2020) no. 9, pp. 1323-1353. http://geodesic.mathdoc.fr/item/SM_2020_211_9_a4/

[1] O. Bratteli, D. W. Robinson, Operator algebras and quantum statistical mechanics, v. I, Texts Monogr. Phys., $C^*$- and $W^*$-algebras. Symmetry groups. Decomposition of states, Springer-Verlag, New York–Heidelberg, 1979, xii+500 pp. | DOI | MR | MR | Zbl | Zbl

[2] V. Paulsen, Completely bounded maps and operator algebras, Cambridge Stud. Adv. Math., 78, Cambridge Univ. Press, Cambridge, 2002, xii+300 pp. | DOI | MR | Zbl

[3] M. Reed, B. Simon, Methods of modern mathematical physics, v. I, Functional analysis, Academic Press, Inc., New York–London, 1972, xvii+325 pp. | MR | MR | Zbl

[4] A. S. Holevo, Quantum systems, channels, information. A mathematical introduction, De Gruyter Stud. Math. Phys., 16, De Gruyter, Berlin, 2012, xiv+349 pp. | DOI | MR | Zbl

[5] J. Watrous, The theory of quantum information, Cambridge Univ. Press, Cambridge, 2018, viii+590 pp. | DOI | Zbl

[6] M. M. Wilde, Quantum information theory, Cambridge Univ. Press, Cambridge, 2013 | DOI | MR | Zbl

[7] A. Ya. Helemskii, Lectures and exercises on functional analysis, Transl. Math. Monogr., 233, Amer. Math. Soc., Providence, RI, 2006, xviii+468 pp. | MR | Zbl

[8] M. E. Shirokov, “Strong convergence of quantum channels: continuity of the Stinespring dilation and discontinuity of the unitary dilation”, J. Math. Phys. (to appear)

[9] M. E. Shirokov, “On extension of quantum channels and operations to the space of relatively bounded operators”, Lobachevskii J. Math., 41:4 (2020), 714–727 ; arXiv: 1903.06086 | DOI

[10] M. E. Shirokov, A. S. Holevo, “Energy-constrained diamond norms and quantum dynamical semigroups”, Lobachevskii J. Math., 40:10 (2019), 1569–1586 | DOI | MR | Zbl

[11] D. Kretschmann, D. Schlingemann, R. F. Werner, “A continuity theorem for Stinespring's dilation”, J. Funct. Anal., 255:8 (2008), 1889–1904 | DOI | MR | Zbl

[12] A. Winter, Energy-constrained diamond norms with applications to the uniform continuity of continuous variable channel capacities, arXiv: 1712.10267

[13] A. S. Holevo, “Entanglement-assisted capacities of constrained quantum channels”, Theory Probab. Appl., 48:2 (2004), 243–255 | DOI | DOI | MR | Zbl

[14] A. Winter, “Tight uniform continuity bounds for quantum entropies: conditional entropy, relative entropy distance and energy constraints”, Comm. Math. Phys., 347:1 (2016), 291–313 | DOI | MR | Zbl

[15] S. Weis, M. Shirokov, “Extreme points of the set of quantum states with bounded energy”, Russian Math. Surveys

[16] W. F. Stinespring, “Positive functions on $C^*$-algebras”, Proc. Amer. Math. Soc., 6:2 (1955), 211–216 | DOI | MR | Zbl

[17] V. P. Belavkin, G. M. D'Ariano, M. Raginsky, “Operational distance and fidelity for quantum channels”, J. Math. Phys., 46:6 (2005), 062106, 23 pp. | DOI | MR | Zbl

[18] D. Aharonov, A. Kitaev, N. Nisan, “Quantum circuits with mixed states”, STOC' 98. Proceedings of the 30th annual ACM symposium on theory of computing (Dallas, TX, 1998), ACM, New York, 1999, 20–30 | MR | Zbl

[19] M. E. Shirokov, “On the energy-constrained diamond norm and its application in quantum information theory”, Problems Inform. Transmission, 54:1 (2018), 20–33 | DOI | MR | Zbl

[20] S. Pirandola, R. Laurenza, C. Ottaviani, L. Banchi, “Fundamental limits of repeaterless quantum communications”, Nat. Commun., 8 (2017), 15043 | DOI

[21] M. E. Shirokov, “Uniform continuity bounds for information characteristics of quantum channels depending on input dimension and on input energy”, J. Phys. A, 52:1 (2019), 014001, 31 pp. | DOI | MR | Zbl

[22] R. Nair, “Quantum-limited loss sensing: Multiparameter estimation and Bures distance between loss channels”, Phys. Rev. Lett., 121 (2018), 230801 ; arXiv: 1804.02211 | DOI

[23] S. Simons, Minimax and monotonicity, Lecture Notes in Math., 1693, Springer-Verlag, Berlin, 1998, xii+172 pp. | DOI | MR | Zbl

[24] A. Uhlmann, “The “transition probability” in the state space of a $*$-algebra”, Rep. Math. Phys., 9:2 (1976), 273–279 | DOI | MR | Zbl

[25] T. Kato, Perturbation theory for linear operators, Grundlehren Math. Wiss., 132, Corr. printing of the 2nd ed., Springer-Verlag, New York, 1980, xxi+619 pp. | DOI | MR | MR | Zbl | Zbl

[26] I. Bengtsson, K. Życzkowski, Geometry of quantum states. An introduction to quantum entanglement, 2nd ed., Cambridge Univ. Press, Cambridge, 2017, xv+619 pp. | DOI | MR | Zbl

[27] M. Reed, B. Simon, Methods of modern mathematical physics, v. II, Fourier analysis, self-adjointness, Academic Press, New York–London, 1975, xv+361 pp. | MR | MR | Zbl

[28] B. Simon, Operator theory, Compr. Course Anal., 4, Amer. Math. Soc., Providence, RI, 2015, xviii+749 pp. | DOI | MR | Zbl

[29] V. Yu. Protasov, M. E. Shirokov, “On mutually inverse transforms of functions on a half-line”, Dokl. Math., 100:3 (2019), 560–563 | DOI | DOI | Zbl