Bounded automorphism groups of compact complex surfaces
Sbornik. Mathematics, Tome 211 (2020) no. 9, pp. 1310-1322

Voir la notice de l'article provenant de la source Math-Net.Ru

We classify compact complex surfaces whose groups of bimeromorphic selfmaps have bounded finite subgroups. We also prove that the stabilizer of a point in the automorphism group of a compact complex surface of zero Kodaira dimension, as well as the stabilizer of a point in the automorphism group of an arbitrary compact Kähler manifold of nonnegative Kodaira dimension, always has bounded finite subgroups. Bibliography: 23 titles.
Mots-clés : elliptic surface, automorphism group.
@article{SM_2020_211_9_a3,
     author = {Yu. G. Prokhorov and C. A. Shramov},
     title = {Bounded automorphism groups of compact complex surfaces},
     journal = {Sbornik. Mathematics},
     pages = {1310--1322},
     publisher = {mathdoc},
     volume = {211},
     number = {9},
     year = {2020},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2020_211_9_a3/}
}
TY  - JOUR
AU  - Yu. G. Prokhorov
AU  - C. A. Shramov
TI  - Bounded automorphism groups of compact complex surfaces
JO  - Sbornik. Mathematics
PY  - 2020
SP  - 1310
EP  - 1322
VL  - 211
IS  - 9
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SM_2020_211_9_a3/
LA  - en
ID  - SM_2020_211_9_a3
ER  - 
%0 Journal Article
%A Yu. G. Prokhorov
%A C. A. Shramov
%T Bounded automorphism groups of compact complex surfaces
%J Sbornik. Mathematics
%D 2020
%P 1310-1322
%V 211
%N 9
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SM_2020_211_9_a3/
%G en
%F SM_2020_211_9_a3
Yu. G. Prokhorov; C. A. Shramov. Bounded automorphism groups of compact complex surfaces. Sbornik. Mathematics, Tome 211 (2020) no. 9, pp. 1310-1322. http://geodesic.mathdoc.fr/item/SM_2020_211_9_a3/