Bounded automorphism groups of compact complex surfaces
Sbornik. Mathematics, Tome 211 (2020) no. 9, pp. 1310-1322 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We classify compact complex surfaces whose groups of bimeromorphic selfmaps have bounded finite subgroups. We also prove that the stabilizer of a point in the automorphism group of a compact complex surface of zero Kodaira dimension, as well as the stabilizer of a point in the automorphism group of an arbitrary compact Kähler manifold of nonnegative Kodaira dimension, always has bounded finite subgroups. Bibliography: 23 titles.
Mots-clés : elliptic surface, automorphism group.
@article{SM_2020_211_9_a3,
     author = {Yu. G. Prokhorov and C. A. Shramov},
     title = {Bounded automorphism groups of compact complex surfaces},
     journal = {Sbornik. Mathematics},
     pages = {1310--1322},
     year = {2020},
     volume = {211},
     number = {9},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2020_211_9_a3/}
}
TY  - JOUR
AU  - Yu. G. Prokhorov
AU  - C. A. Shramov
TI  - Bounded automorphism groups of compact complex surfaces
JO  - Sbornik. Mathematics
PY  - 2020
SP  - 1310
EP  - 1322
VL  - 211
IS  - 9
UR  - http://geodesic.mathdoc.fr/item/SM_2020_211_9_a3/
LA  - en
ID  - SM_2020_211_9_a3
ER  - 
%0 Journal Article
%A Yu. G. Prokhorov
%A C. A. Shramov
%T Bounded automorphism groups of compact complex surfaces
%J Sbornik. Mathematics
%D 2020
%P 1310-1322
%V 211
%N 9
%U http://geodesic.mathdoc.fr/item/SM_2020_211_9_a3/
%G en
%F SM_2020_211_9_a3
Yu. G. Prokhorov; C. A. Shramov. Bounded automorphism groups of compact complex surfaces. Sbornik. Mathematics, Tome 211 (2020) no. 9, pp. 1310-1322. http://geodesic.mathdoc.fr/item/SM_2020_211_9_a3/

[1] D. N. Akhiezer, Lie group actions in complex analysis, Aspects Math., E27, Friedr. Vieweg Sohn, Braunschweig, 1995, viii+201 pp. | DOI | MR | Zbl

[2] C. Bennett, R. Miranda, “The automorphism groups of the hyperelliptic surfaces”, Rocky Mountain J. Math., 20:1 (1990), 31–37 | DOI | MR | Zbl

[3] C. Birkar, Singularities of linear systems and boundedness of Fano varieties, 2016, arXiv: 1609.05543

[4] W. P. Barth, K. Hulek, C. A. M. Peters, A. Van de Ven, Compact complex surfaces, Ergeb. Math. Grenzgeb. (3), 4, 2nd ed., Springer-Verlag, Berlin, 2004, xii+436 pp. | DOI | MR | Zbl

[5] A. Fujiki, “On automorphism groups of compact Kähler manifolds”, Invent. Math., 44:3 (1978), 225–258 | DOI | MR | Zbl

[6] D. Huybrechts, Lectures on K3 surfaces, Cambridge Stud. Adv. Math., 158, Cambridge Univ. Press, Cambridge, 2016, xi+485 pp. | DOI | MR | Zbl

[7] Jin Hong Kim, “Jordan property and automorphism groups of normal compact Kähler varieties”, Commun. Contemp. Math., 20:3 (2018), 1750024, 9 pp. | DOI | MR | Zbl

[8] K. Kodaira, “On compact analytic surfaces. II”, Ann. of Math. (2), 77:3 (1963), 563–626 | DOI | MR | Zbl

[9] J. Kollár, “The structure of algebraic threefolds: an introduction to Mori's program”, Bull. Amer. Math. Soc. (N.S.), 17:2 (1987), 211–273 | DOI | MR | Zbl

[10] R. Miranda, The basic theory of elliptic surfaces, Notes of lectures, Dottorato Ric. Mat., ETS Editrice, Pisa, 1989, vi+108 pp. | MR | Zbl

[11] Sh. Mukai, Yu. Namikawa, “Automorphisms of Enriques surfaces which act trivially on the cohomology groups”, Invent. Math., 77:3 (1984), 383–397 | DOI | MR | Zbl

[12] Yu. Prokhorov, C. Shramov, “Jordan property for groups of birational selfmaps”, Compos. Math., 150:12 (2014), 2054–2072 | DOI | MR | Zbl

[13] Yu. Prokhorov, C. Shramov, “Automorphism groups of compact complex surfaces”, Int. Math. Res. Not. IMRN, Publ. online: 2019, rnz124, 22 pp. ; arXiv: 1708.03566 | DOI

[14] Yu. Prokhorov, C. Shramov, “Finite groups of birational selfmaps of threefolds”, Math. Res. Lett., 25:3 (2018), 957–972 | DOI | MR | Zbl

[15] J. Sawon, Isotrivial elliptic $K3$ surfaces and Lagrangian fibrations, 2014, arXiv: 1406.1233

[16] J.-P. Serre, “Bounds for the orders of the finite subgroups of $G(k)$”, Group representation theory, EPFL Press, Lausanne, 2007, 405–450 | MR | Zbl

[17] C. Shramov, “Finite groups acting on elliptic surfaces”, Eur. J. Math., Publ. online: 2019, 12 pp. ; arXiv: 1907.01816 | DOI

[18] C. Shramov, V. Vologodsky, Automorphisms of pointless surfaces, 2018, arXiv: 1807.06477

[19] K. Ueno, Classification theory of algebraic varieties and compact complex spaces, Notes written in collaboration with P. Cherenack, Lecture Notes in Math., 439, Springer-Verlag, Berlin–New York, 1975, xix+278 pp. | DOI | MR | Zbl

[20] V. V. Nikulin, “Classification of Picard lattices of K3 surfaces”, Izv. Math., 82:4 (2018), 752–816 | DOI | DOI | MR | Zbl

[21] M. Maruyama, “On automorphism groups of ruled surfaces”, J. Math. Kyoto Univ., 11 (1971), 89–112 | DOI | MR | Zbl

[22] V. V. Przyjalkowski, I. A. Cheltsov, K. A. Shramov, “Fano threefolds with infinite automorphism groups”, Izv. Math., 83:4 (2019), 860–907 | DOI | DOI | MR | Zbl

[23] A. V. Pukhlikov, “Automorphisms of certain affine complements in projective space”, Sb. Math., 209:2 (2018), 276–289 | DOI | DOI | MR | Zbl