Bounded automorphism groups of compact complex surfaces
Sbornik. Mathematics, Tome 211 (2020) no. 9, pp. 1310-1322
Voir la notice de l'article provenant de la source Math-Net.Ru
We classify compact complex surfaces whose groups of bimeromorphic selfmaps have bounded finite subgroups. We also prove that the stabilizer of a point in the automorphism group of a compact complex surface of zero Kodaira dimension, as well as the stabilizer of a point in the automorphism group of an arbitrary compact Kähler manifold of nonnegative Kodaira dimension, always has bounded finite subgroups.
Bibliography: 23 titles.
Mots-clés :
elliptic surface, automorphism group.
@article{SM_2020_211_9_a3,
author = {Yu. G. Prokhorov and C. A. Shramov},
title = {Bounded automorphism groups of compact complex surfaces},
journal = {Sbornik. Mathematics},
pages = {1310--1322},
publisher = {mathdoc},
volume = {211},
number = {9},
year = {2020},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SM_2020_211_9_a3/}
}
Yu. G. Prokhorov; C. A. Shramov. Bounded automorphism groups of compact complex surfaces. Sbornik. Mathematics, Tome 211 (2020) no. 9, pp. 1310-1322. http://geodesic.mathdoc.fr/item/SM_2020_211_9_a3/