@article{SM_2020_211_9_a2,
author = {M. Ya. Mazalov},
title = {A~criterion for uniform approximability of individual functions by solutions of second-order homogeneous elliptic equations with constant complex coefficients},
journal = {Sbornik. Mathematics},
pages = {1267--1309},
year = {2020},
volume = {211},
number = {9},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SM_2020_211_9_a2/}
}
TY - JOUR AU - M. Ya. Mazalov TI - A criterion for uniform approximability of individual functions by solutions of second-order homogeneous elliptic equations with constant complex coefficients JO - Sbornik. Mathematics PY - 2020 SP - 1267 EP - 1309 VL - 211 IS - 9 UR - http://geodesic.mathdoc.fr/item/SM_2020_211_9_a2/ LA - en ID - SM_2020_211_9_a2 ER -
%0 Journal Article %A M. Ya. Mazalov %T A criterion for uniform approximability of individual functions by solutions of second-order homogeneous elliptic equations with constant complex coefficients %J Sbornik. Mathematics %D 2020 %P 1267-1309 %V 211 %N 9 %U http://geodesic.mathdoc.fr/item/SM_2020_211_9_a2/ %G en %F SM_2020_211_9_a2
M. Ya. Mazalov. A criterion for uniform approximability of individual functions by solutions of second-order homogeneous elliptic equations with constant complex coefficients. Sbornik. Mathematics, Tome 211 (2020) no. 9, pp. 1267-1309. http://geodesic.mathdoc.fr/item/SM_2020_211_9_a2/
[1] L. Hörmander, The analysis of linear partial differential operators, v. I, Grundlehren Math. Wiss., 256, Distribution theory and Fourier analysis, Springer-Verlag, Berlin, 1983, ix+391 pp. | DOI | MR | MR | Zbl | Zbl
[2] A. G. Vitushkin, “The analytic capacity of sets in problems of approximation theory”, Russian Math. Surveys, 22:6 (1967), 139–200 | DOI | MR | Zbl
[3] R. Harvey, J. C. Polking, “A notion of capacity which characterizes removable singularities”, Trans. Amer. Math. Soc., 169 (1972), 183–195 | DOI | MR | Zbl
[4] M. V. Keldyš, “On the solvability and stability of the Dirichlet problem”, Amer. Math. Soc. Transl. Ser. 2, 51, Amer. Math. Soc., Providence, RI, 1966, 1–73 | DOI | MR | Zbl
[5] M. Ya. Mazalov, P. V. Paramonov, K. Yu. Fedorovskiy, “Conditions for $C^m$-approximability of functions by solutions of elliptic equations”, Russian Math. Surveys, 67:6 (2012), 1023–1068 | DOI | DOI | MR | Zbl
[6] J. Mateu, Yu. Netrusov, J. Orobitg, J. Verdera, “BMO and Lipschitz approximation by solutions of elliptic equations”, Ann. Inst. Fourier (Grenoble), 46:4 (1996), 1057–1081 | DOI | MR | Zbl
[7] M. Ya. Mazalov, “A criterion for uniform approximability on arbitrary compact sets for solutions of elliptic equations”, Sb. Math., 199:1-2 (2008), 13–44 | DOI | DOI | MR | Zbl
[8] P. V. Paramonov, “New criteria for uniform approximability by harmonic functions on compact sets in $\mathbb R^2$”, Proc. Steklov Inst. Math., 298 (2017), 201–211 | DOI | DOI | MR | Zbl
[9] E. M. Stein, Singular integrals and differentiability properties of functions, Princeton Math. Ser., 30, Princeton Univ. Press, Princeton, NJ, 1970, xiv+290 pp. | MR | MR | Zbl | Zbl
[10] M. Ya. Mazalov, “Criterion of uniform approximability by harmonic functions on compact sets in $\mathbb R^3$”, Proc. Steklov Inst. Math., 279:1 (2012), 110–154 | DOI | MR | Zbl
[11] A. G. O'Farrell, “Uniform approximation by harmonic functions. Problem 12.15”, Linear and complex analysis. Problem book 3, v. II, Lecture Notes in Math., 1574, Springer-Verlag, 1994, 121 | DOI | MR | Zbl
[12] P. V. Paramonov, “Some new criteria for uniform approximability of functions by rational fractions”, Sb. Math., 186:9 (1995), 1325–1340 | DOI | MR | Zbl
[13] P. V. Paramonov, “Criteria for the individual $C^m$-approximability of functions on compact subsets of $\mathbb R^N$ by solutions of second-order homogeneous elliptic equations”, Sb. Math., 209:6 (2018), 857–870 | DOI | DOI | MR | Zbl
[14] J. Verdera, M. S. Mel'nikov, P. V. Paramonov, “$C^1$-approximation and extension of subharmonic functions”, Sb. Math., 192:4 (2001), 515–535 | DOI | DOI | MR | Zbl
[15] M. Ya. Mazalov, “On uniform approximation of harmonic functions”, St. Petersburg Math. J., 23:4 (2012), 731–759 | DOI | MR | Zbl
[16] R. Harvey, J. Polking, “Removable singularities of solutions of linear partial differential equations”, Acta Math., 125 (1970), 39–56 | DOI | MR | Zbl
[17] N. N. Tarkhanov, The analysis of solutions of elliptic equations, Math. Appl., 406, Kluwer Acad. Publ., Dordrecht, 1997, xx+479 pp. | DOI | MR | MR | Zbl | Zbl
[18] J. Verdera, “$C^m$-approximation by solutions of elliptic equations, and Calderón–Zygmund operators”, Duke Math. J., 55:1 (1987), 157–187 | DOI | MR | Zbl
[19] M. Ya. Mazalov, “Uniform approximations by bianalytic functions on arbitrary compact subsets of $\mathbb C$”, Sb. Math., 195:5 (2004), 687–709 | DOI | DOI | MR | Zbl
[20] J. Verdera, “Removability, capacity and approximation”, Complex potential theory (Montreal, PQ, 1993), NATO Adv. Sci. Inst. Ser. C Math. Phys. Sci., 439, Kluwer Acad. Publ., Dordrecht, 1994, 419–473 | DOI | MR | Zbl
[21] F. John, L. Nirenberg, “On functions of bounded mean oscillation”, Comm. Pure Appl. Math., 14:3 (1961), 415–426 | DOI | MR | Zbl
[22] J. Mateu, P. Mattila, A. Nicolau, J. Orobitg, “BMO for nondoubling measures”, Duke Math. J., 102:3 (2000), 533–565 | DOI | MR | Zbl
[23] G. David, Wavelets and singular integrals on curves and surfaces, Lecture Notes in Math., 1465, Springer-Verlag, Berlin, 1991, x+107 pp. | DOI | MR | Zbl