Mots-clés : tiles
@article{SM_2020_211_9_a1,
author = {T. I. Zaitseva},
title = {Simple tiles and attractors},
journal = {Sbornik. Mathematics},
pages = {1233--1266},
year = {2020},
volume = {211},
number = {9},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SM_2020_211_9_a1/}
}
T. I. Zaitseva. Simple tiles and attractors. Sbornik. Mathematics, Tome 211 (2020) no. 9, pp. 1233-1266. http://geodesic.mathdoc.fr/item/SM_2020_211_9_a1/
[1] K. Gröchenig, A. Haas, “Self-similar lattice tilings”, J. Fourier Anal. Appl., 1:2 (1994), 131–170 | DOI | MR | Zbl
[2] K. Gröchenig, W. R. Madych, “Multiresolution analysis, Haar bases and self-similar tilings of $\mathbb{R}^n$”, IEEE Trans. Inform. Theory, 38:2, Part 2 (1992), 556–568 | DOI | MR | Zbl
[3] I. Ya. Novikov, V. Yu. Protasov, M. A. Skopina, Wavelet theory, Transl. Math. Monogr., 239, Amer. Math. Soc., Providence, RI, 2011, xiv+506 pp. | MR | MR | Zbl | Zbl
[4] C. A. Cabrelli, C. Heil, U. M. Molter, Self-similarity and multiwavelets in higher dimensions, Mem. Amer. Math. Soc., 170, no. 807, Amer. Math. Soc., Providence, RI, 2004, viii+82 pp. | DOI | MR | Zbl
[5] M. Charina, V. Yu. Protasov, “Regularity of anisotropic refinable functions”, Appl. Comput. Harmon. Anal., 47:3 (2019), 795–821 | DOI | MR | Zbl
[6] T. Zaitseva, “Haar wavelets and subdivision algorithms on the plane”, Adv. Syst. Sci. Appl., 17:3 (2017), 49–57 | DOI
[7] J. E. Hutchinson, “Fractals and self similarity”, Indiana Univ. Math. J., 30:5 (1981), 713–747 | DOI | MR | Zbl
[8] I. Novikov, E. Semenov, Haar series and linear operators, Math. Appl., 367, Kluwer Acad. Publ., Dordrecht, 1997, xvi+218 pp. | DOI | MR | Zbl
[9] C. Richter, “Self-affine convex discs are polygons”, Beitr. Algebra Geom., 53:1 (2012), 219–224 | DOI | MR | Zbl
[10] A. S. Voynov, “On the structure of self-affine convex bodies”, Sb. Math., 204:8 (2013), 1122–1130 | DOI | DOI | MR | Zbl
[11] C. T. Long, “Addition theorems for sets of integers”, Pacific J. Math., 23:1 (1967), 107–112 | DOI | MR | Zbl
[12] N. G. de Bruijn, “On number systems”, Nieuw Arch. Wisk. (3), 4 (1956), 15–17 | MR | Zbl
[13] O. Bodini, E. Rivals, “Tiling an interval of the discrete line”, Combinatorial pattern matching (Barcelona, 2006), Lecture Notes in Comput. Sci., 4009, Springer, Berlin, 117–128 | DOI | MR | Zbl
[14] R. Tijdeman, Decomposition of the integers as a direct sum of two subsets, Tech. Rep. W91-14, Math. Inst., Univ. of Leiden, 1991, 16 pp.
[15] J. C. Lagarias, Yang Wang, “Tiling the line with translates of one tile”, Invent. Math., 124:1-3 (1996), 341–365 | DOI | MR | Zbl
[16] N. G. de Bruijn, “On bases for the set of integers”, Publ. Math. Debrecen, 1 (1950), 232–242 | MR | Zbl
[17] M. N. Kolountzakis, M. Matolcsi, Tilings by translation, arXiv: 1009.3799
[18] A. Kravchenko, D. Mekhontsev, IFS Builder 3d, software http://fractals.nsu.ru/builder3d_en.htm