Simple tiles and attractors
Sbornik. Mathematics, Tome 211 (2020) no. 9, pp. 1233-1266 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We study self-similar attractors in the space $\mathbb R^d$, that is, self-similar compact sets defined by several affine operators with the same linear part. The special case of attractors when the matrix $M$ of the linear part and the shifts of the affine operators are integer, is well known in the literature due to the many applications in the theory of wavelets and in approximation theory. In this case, if an attractor has measure one it is called a tile. We classify self-similar attractors and tiles in the case when they are either polyhedra or a union of finitely many polyhedra. We obtain a complete description of the matrices $M$ and the digit sets for parallelepiped tiles and for convex tiles in arbitrary dimensions. It is proved that on a two-dimensional plane, every polygonal tile (not necessarily convex) must be a parallelogram. Nontrivial examples of multidimensional tiles which are a finite union of polyhedra are given, and in the case $d=1$ a complete classification is provided for them. Applications to orthonormal Haar systems in $\mathbb R^d$ and to integer univariate tiles are considered. Bibliography: 18 titles.
Keywords: space tiling, self-similarity, Haar systems, polyhedra.
Mots-clés : tiles
@article{SM_2020_211_9_a1,
     author = {T. I. Zaitseva},
     title = {Simple tiles and attractors},
     journal = {Sbornik. Mathematics},
     pages = {1233--1266},
     year = {2020},
     volume = {211},
     number = {9},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2020_211_9_a1/}
}
TY  - JOUR
AU  - T. I. Zaitseva
TI  - Simple tiles and attractors
JO  - Sbornik. Mathematics
PY  - 2020
SP  - 1233
EP  - 1266
VL  - 211
IS  - 9
UR  - http://geodesic.mathdoc.fr/item/SM_2020_211_9_a1/
LA  - en
ID  - SM_2020_211_9_a1
ER  - 
%0 Journal Article
%A T. I. Zaitseva
%T Simple tiles and attractors
%J Sbornik. Mathematics
%D 2020
%P 1233-1266
%V 211
%N 9
%U http://geodesic.mathdoc.fr/item/SM_2020_211_9_a1/
%G en
%F SM_2020_211_9_a1
T. I. Zaitseva. Simple tiles and attractors. Sbornik. Mathematics, Tome 211 (2020) no. 9, pp. 1233-1266. http://geodesic.mathdoc.fr/item/SM_2020_211_9_a1/

[1] K. Gröchenig, A. Haas, “Self-similar lattice tilings”, J. Fourier Anal. Appl., 1:2 (1994), 131–170 | DOI | MR | Zbl

[2] K. Gröchenig, W. R. Madych, “Multiresolution analysis, Haar bases and self-similar tilings of $\mathbb{R}^n$”, IEEE Trans. Inform. Theory, 38:2, Part 2 (1992), 556–568 | DOI | MR | Zbl

[3] I. Ya. Novikov, V. Yu. Protasov, M. A. Skopina, Wavelet theory, Transl. Math. Monogr., 239, Amer. Math. Soc., Providence, RI, 2011, xiv+506 pp. | MR | MR | Zbl | Zbl

[4] C. A. Cabrelli, C. Heil, U. M. Molter, Self-similarity and multiwavelets in higher dimensions, Mem. Amer. Math. Soc., 170, no. 807, Amer. Math. Soc., Providence, RI, 2004, viii+82 pp. | DOI | MR | Zbl

[5] M. Charina, V. Yu. Protasov, “Regularity of anisotropic refinable functions”, Appl. Comput. Harmon. Anal., 47:3 (2019), 795–821 | DOI | MR | Zbl

[6] T. Zaitseva, “Haar wavelets and subdivision algorithms on the plane”, Adv. Syst. Sci. Appl., 17:3 (2017), 49–57 | DOI

[7] J. E. Hutchinson, “Fractals and self similarity”, Indiana Univ. Math. J., 30:5 (1981), 713–747 | DOI | MR | Zbl

[8] I. Novikov, E. Semenov, Haar series and linear operators, Math. Appl., 367, Kluwer Acad. Publ., Dordrecht, 1997, xvi+218 pp. | DOI | MR | Zbl

[9] C. Richter, “Self-affine convex discs are polygons”, Beitr. Algebra Geom., 53:1 (2012), 219–224 | DOI | MR | Zbl

[10] A. S. Voynov, “On the structure of self-affine convex bodies”, Sb. Math., 204:8 (2013), 1122–1130 | DOI | DOI | MR | Zbl

[11] C. T. Long, “Addition theorems for sets of integers”, Pacific J. Math., 23:1 (1967), 107–112 | DOI | MR | Zbl

[12] N. G. de Bruijn, “On number systems”, Nieuw Arch. Wisk. (3), 4 (1956), 15–17 | MR | Zbl

[13] O. Bodini, E. Rivals, “Tiling an interval of the discrete line”, Combinatorial pattern matching (Barcelona, 2006), Lecture Notes in Comput. Sci., 4009, Springer, Berlin, 117–128 | DOI | MR | Zbl

[14] R. Tijdeman, Decomposition of the integers as a direct sum of two subsets, Tech. Rep. W91-14, Math. Inst., Univ. of Leiden, 1991, 16 pp.

[15] J. C. Lagarias, Yang Wang, “Tiling the line with translates of one tile”, Invent. Math., 124:1-3 (1996), 341–365 | DOI | MR | Zbl

[16] N. G. de Bruijn, “On bases for the set of integers”, Publ. Math. Debrecen, 1 (1950), 232–242 | MR | Zbl

[17] M. N. Kolountzakis, M. Matolcsi, Tilings by translation, arXiv: 1009.3799

[18] A. Kravchenko, D. Mekhontsev, IFS Builder 3d, software http://fractals.nsu.ru/builder3d_en.htm