Stable decomposability of matrices over the rational closure of a group algebra of an ordered group
Sbornik. Mathematics, Tome 211 (2020) no. 9, pp. 1213-1232 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Under the assumption that the rational closure of a group algebra of a left-ordered group in the ring of operators of the module of formal Malcev series is a division ring, we find a canonical form of nonsingular matrices of this division ring. Bibliography: 10 titles.
Keywords: right-ordered groups, division ring of fractions, formal series.
@article{SM_2020_211_9_a0,
     author = {N. I. Dubrovin},
     title = {Stable decomposability of matrices over the rational closure of a~group algebra of an ordered group},
     journal = {Sbornik. Mathematics},
     pages = {1213--1232},
     year = {2020},
     volume = {211},
     number = {9},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2020_211_9_a0/}
}
TY  - JOUR
AU  - N. I. Dubrovin
TI  - Stable decomposability of matrices over the rational closure of a group algebra of an ordered group
JO  - Sbornik. Mathematics
PY  - 2020
SP  - 1213
EP  - 1232
VL  - 211
IS  - 9
UR  - http://geodesic.mathdoc.fr/item/SM_2020_211_9_a0/
LA  - en
ID  - SM_2020_211_9_a0
ER  - 
%0 Journal Article
%A N. I. Dubrovin
%T Stable decomposability of matrices over the rational closure of a group algebra of an ordered group
%J Sbornik. Mathematics
%D 2020
%P 1213-1232
%V 211
%N 9
%U http://geodesic.mathdoc.fr/item/SM_2020_211_9_a0/
%G en
%F SM_2020_211_9_a0
N. I. Dubrovin. Stable decomposability of matrices over the rational closure of a group algebra of an ordered group. Sbornik. Mathematics, Tome 211 (2020) no. 9, pp. 1213-1232. http://geodesic.mathdoc.fr/item/SM_2020_211_9_a0/

[1] T. V. Dubrovina, N. I. Dubrovin, “Korni v universalnoi nakryvayuschei gruppe gruppy unimodulyarnykh matrits vtorogo poryadka”, Fundament. i prikl. matem., 6:3 (2000), 757–776 | MR | Zbl

[2] A. I. Maltsev, “O vklyuchenii gruppovykh algebr v algebry s deleniem”, Dokl. AN SSSR, 60 (1948), 1499–1501 | MR | Zbl

[3] B. H. Neumann, “On ordered division rings”, Trans. Amer. Math. Soc., 66 (1949), 202–252 | DOI | MR | Zbl

[4] N. I. Dubrovin, “Rational closure of the group algebra of a linearly ordered group in the division ring of Mal'tsev series”, Siberian Math. J., 32:6 (1991), 939–948 | DOI | MR | Zbl

[5] N. I. Dubrovin, J. Gräter, T. Hanke, “Complexity of elements in rings”, Algebr. Represent. Theory, 6:1 (2003), 33–45 | DOI | MR | Zbl

[6] N. I. Dubrovin, “Rational operators of the space of formal series”, J. Math. Sci. (N.Y.), 149:3 (2008), 1191–1223 | DOI | MR | Zbl

[7] N. I. Dubrovin, T. V. Dubrovina, “Topologicheskie lineinye prostranstva formalnykh summ”, Matematichnii Studii, 21:2 (2004), 209–220 | MR | Zbl

[8] N. I. Dubrovin, “Formal sums and power series over a group”, Sb. Math., 191:7 (2000), 955–971 | DOI | DOI | MR | Zbl

[9] N. Burbaki, Obschaya topologiya. Topologicheskie gruppy. Chisla i svyazannye s nimi gruppy i prostranstva, Nauka, M., 1969, 392 pp. ; N. Bourbaki, Éléments de mathématique. Première partie. (Fascicule III.) Livre III. Topologie générale, Chap. 3: Groupes topologiques. Chap. 4: Nombres réels, Actualités Sci. Indust., 1143, 3ème éd., rev. et augm., Hermann, Paris, 1960, 236 pp. ; Chap. V: Groupes à un paramètre. Chap. VI: Espaces numériques et espaces projectifs. Chap. VII: Les groupes additifs $R^n$. Chap. VIII: Nombres complexes, Actualités Sci. Indust., 1235, 1963, 151 pp. | MR | Zbl | MR | Zbl | Zbl

[10] V. A. Sadovnichii, Theory of operators, Contemp. Soviet Math., Consultants Bureau, New York, 1991, xii+396 pp. | MR | MR | Zbl | Zbl