Stable decomposability of matrices over the rational closure of a~group algebra of an ordered group
Sbornik. Mathematics, Tome 211 (2020) no. 9, pp. 1213-1232

Voir la notice de l'article provenant de la source Math-Net.Ru

Under the assumption that the rational closure of a group algebra of a left-ordered group in the ring of operators of the module of formal Malcev series is a division ring, we find a canonical form of nonsingular matrices of this division ring. Bibliography: 10 titles.
Keywords: right-ordered groups, division ring of fractions, formal series.
@article{SM_2020_211_9_a0,
     author = {N. I. Dubrovin},
     title = {Stable decomposability of matrices over the rational closure of a~group algebra of an ordered group},
     journal = {Sbornik. Mathematics},
     pages = {1213--1232},
     publisher = {mathdoc},
     volume = {211},
     number = {9},
     year = {2020},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2020_211_9_a0/}
}
TY  - JOUR
AU  - N. I. Dubrovin
TI  - Stable decomposability of matrices over the rational closure of a~group algebra of an ordered group
JO  - Sbornik. Mathematics
PY  - 2020
SP  - 1213
EP  - 1232
VL  - 211
IS  - 9
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SM_2020_211_9_a0/
LA  - en
ID  - SM_2020_211_9_a0
ER  - 
%0 Journal Article
%A N. I. Dubrovin
%T Stable decomposability of matrices over the rational closure of a~group algebra of an ordered group
%J Sbornik. Mathematics
%D 2020
%P 1213-1232
%V 211
%N 9
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SM_2020_211_9_a0/
%G en
%F SM_2020_211_9_a0
N. I. Dubrovin. Stable decomposability of matrices over the rational closure of a~group algebra of an ordered group. Sbornik. Mathematics, Tome 211 (2020) no. 9, pp. 1213-1232. http://geodesic.mathdoc.fr/item/SM_2020_211_9_a0/