Stable decomposability of matrices over the rational closure of a~group algebra of an ordered group
Sbornik. Mathematics, Tome 211 (2020) no. 9, pp. 1213-1232
Voir la notice de l'article provenant de la source Math-Net.Ru
Under the assumption that the rational closure of a group algebra of a left-ordered group in the ring of operators of the module of formal Malcev series is a division ring, we find a canonical form of nonsingular matrices of this division ring.
Bibliography: 10 titles.
Keywords:
right-ordered groups, division ring of fractions, formal series.
@article{SM_2020_211_9_a0,
author = {N. I. Dubrovin},
title = {Stable decomposability of matrices over the rational closure of a~group algebra of an ordered group},
journal = {Sbornik. Mathematics},
pages = {1213--1232},
publisher = {mathdoc},
volume = {211},
number = {9},
year = {2020},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SM_2020_211_9_a0/}
}
TY - JOUR AU - N. I. Dubrovin TI - Stable decomposability of matrices over the rational closure of a~group algebra of an ordered group JO - Sbornik. Mathematics PY - 2020 SP - 1213 EP - 1232 VL - 211 IS - 9 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/SM_2020_211_9_a0/ LA - en ID - SM_2020_211_9_a0 ER -
N. I. Dubrovin. Stable decomposability of matrices over the rational closure of a~group algebra of an ordered group. Sbornik. Mathematics, Tome 211 (2020) no. 9, pp. 1213-1232. http://geodesic.mathdoc.fr/item/SM_2020_211_9_a0/