Nondiagonal terms in the second moment of automorphic $L$-functions
Sbornik. Mathematics, Tome 211 (2020) no. 8, pp. 1171-1189 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We investigate the exact formula for the second moment of central $L$-values associated to primitive cusp forms of level one and weight $k\to\infty$, $k\in\mathbb N$, which was proved by Kuznetsov in 1994. Nondiagonal terms in this formula are expressed in terms of several convolution sums of divisor functions. We investigate the main terms of the convolution sums and show that they cancel out. Bibliography: 8 titles.
Keywords: moments of central values of $L$-functions, additive divisor problem, hypergeometric function.
@article{SM_2020_211_8_a4,
     author = {D. A. Frolenkov},
     title = {Nondiagonal terms in the second moment of automorphic $L$-functions},
     journal = {Sbornik. Mathematics},
     pages = {1171--1189},
     year = {2020},
     volume = {211},
     number = {8},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2020_211_8_a4/}
}
TY  - JOUR
AU  - D. A. Frolenkov
TI  - Nondiagonal terms in the second moment of automorphic $L$-functions
JO  - Sbornik. Mathematics
PY  - 2020
SP  - 1171
EP  - 1189
VL  - 211
IS  - 8
UR  - http://geodesic.mathdoc.fr/item/SM_2020_211_8_a4/
LA  - en
ID  - SM_2020_211_8_a4
ER  - 
%0 Journal Article
%A D. A. Frolenkov
%T Nondiagonal terms in the second moment of automorphic $L$-functions
%J Sbornik. Mathematics
%D 2020
%P 1171-1189
%V 211
%N 8
%U http://geodesic.mathdoc.fr/item/SM_2020_211_8_a4/
%G en
%F SM_2020_211_8_a4
D. A. Frolenkov. Nondiagonal terms in the second moment of automorphic $L$-functions. Sbornik. Mathematics, Tome 211 (2020) no. 8, pp. 1171-1189. http://geodesic.mathdoc.fr/item/SM_2020_211_8_a4/

[1] O. Balkanova, D. Frolenkov, “Moments of $L$-functions and Liouville–Green method”, J. Eur. Math. Soc. (to appear)

[2] O. G. Balkanova, D. A. Frolenkov, “On the binary additive divisor problem”, Proc. Steklov Inst. Math., 299 (2017), 44–49 | DOI | DOI | Zbl

[3] O. Balkanova, D. Frolenkov, “The first moment of cusp form $L$-functions in weight aspect on average”, Acta Arith., 181:3 (2017), 197–208 | DOI | MR | Zbl

[4] O. G. Balkanova, D. A. Frolenkov, “A uniform asymptotic formula for the second moment of primitive $L$-functions on the critical line”, Proc. Steklov Inst. Math., 294 (2016), 13–46 | DOI | DOI | MR | Zbl

[5] H. Iwaniec, P. Sarnak, “The non-vanishing of central values of automorphic $L$-functions and Landau–Siegel zeros”, Israel J. Math., 120 (2000), 155–177 | DOI | MR | Zbl

[6] Y. Motohashi, “The binary additive divisor problem”, Ann. Sci. École Norm. Sup. (4), 27:5 (1994), 529–572 | DOI | MR | Zbl

[7] NIST handbook of mathematical functions, eds. F. W. J. Olver, D. W. Lozier, R. F. Boisvert, C. W. Clark, U.S. Department of Commerce, National Institute of Standards and Technology, Washington, DC; Cambridge Univ. Press, Cambridge, 2010, xvi+951 pp. | MR | Zbl

[8] A. P. Prudnikov, Yu. A. Brychkov, O. I. Marichev, Integrals and series, v. 3, More special functions, Gordon and Breach Sci. Publ., New York, 1990, 800 pp. | MR | MR | Zbl | Zbl