@article{SM_2020_211_8_a4,
author = {D. A. Frolenkov},
title = {Nondiagonal terms in the second moment of automorphic $L$-functions},
journal = {Sbornik. Mathematics},
pages = {1171--1189},
year = {2020},
volume = {211},
number = {8},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SM_2020_211_8_a4/}
}
D. A. Frolenkov. Nondiagonal terms in the second moment of automorphic $L$-functions. Sbornik. Mathematics, Tome 211 (2020) no. 8, pp. 1171-1189. http://geodesic.mathdoc.fr/item/SM_2020_211_8_a4/
[1] O. Balkanova, D. Frolenkov, “Moments of $L$-functions and Liouville–Green method”, J. Eur. Math. Soc. (to appear)
[2] O. G. Balkanova, D. A. Frolenkov, “On the binary additive divisor problem”, Proc. Steklov Inst. Math., 299 (2017), 44–49 | DOI | DOI | Zbl
[3] O. Balkanova, D. Frolenkov, “The first moment of cusp form $L$-functions in weight aspect on average”, Acta Arith., 181:3 (2017), 197–208 | DOI | MR | Zbl
[4] O. G. Balkanova, D. A. Frolenkov, “A uniform asymptotic formula for the second moment of primitive $L$-functions on the critical line”, Proc. Steklov Inst. Math., 294 (2016), 13–46 | DOI | DOI | MR | Zbl
[5] H. Iwaniec, P. Sarnak, “The non-vanishing of central values of automorphic $L$-functions and Landau–Siegel zeros”, Israel J. Math., 120 (2000), 155–177 | DOI | MR | Zbl
[6] Y. Motohashi, “The binary additive divisor problem”, Ann. Sci. École Norm. Sup. (4), 27:5 (1994), 529–572 | DOI | MR | Zbl
[7] NIST handbook of mathematical functions, eds. F. W. J. Olver, D. W. Lozier, R. F. Boisvert, C. W. Clark, U.S. Department of Commerce, National Institute of Standards and Technology, Washington, DC; Cambridge Univ. Press, Cambridge, 2010, xvi+951 pp. | MR | Zbl
[8] A. P. Prudnikov, Yu. A. Brychkov, O. I. Marichev, Integrals and series, v. 3, More special functions, Gordon and Breach Sci. Publ., New York, 1990, 800 pp. | MR | MR | Zbl | Zbl