Mots-clés : simple Carathéodory domain, Lipschitz-Hölder spaces
@article{SM_2020_211_8_a3,
author = {P. V. Paramonov and K. Yu. Fedorovskiy},
title = {On $C^m$-reflection of harmonic functions and $C^m$-approximation by harmonic polynomials},
journal = {Sbornik. Mathematics},
pages = {1159--1170},
year = {2020},
volume = {211},
number = {8},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SM_2020_211_8_a3/}
}
TY - JOUR AU - P. V. Paramonov AU - K. Yu. Fedorovskiy TI - On $C^m$-reflection of harmonic functions and $C^m$-approximation by harmonic polynomials JO - Sbornik. Mathematics PY - 2020 SP - 1159 EP - 1170 VL - 211 IS - 8 UR - http://geodesic.mathdoc.fr/item/SM_2020_211_8_a3/ LA - en ID - SM_2020_211_8_a3 ER -
P. V. Paramonov; K. Yu. Fedorovskiy. On $C^m$-reflection of harmonic functions and $C^m$-approximation by harmonic polynomials. Sbornik. Mathematics, Tome 211 (2020) no. 8, pp. 1159-1170. http://geodesic.mathdoc.fr/item/SM_2020_211_8_a3/
[1] P. V. Paramonov, “O $\operatorname{Lip}^m$- i $C^m$-otrazhenii garmonicheskikh funktsii otnositelno granits oblastei Karateodori v $\mathbb R^2$”, Vestn. MGTU im. N. E. Baumana. Ser. Estestvennye nauki, 2018, no. 4, 36–45 | DOI
[2] K. Fedorovskiy, P. Paramonov, “On $\operatorname{Lip}^m$-reflection of harmonic functions over boundaries of simple Carathéodory domains”, Anal. Math. Phys., 9:3 (2019), 1031–1042 | DOI | MR | Zbl
[3] H. Lebesgue, “Sur le problème de Dirichlet”, Rend. Circ. Mat. Palermo, 24 (1907), 371–402 | DOI | Zbl
[4] E. M. Stein, Singular integrals and differentiability properties of functions, Princeton Math. Ser., 30, Princeton Univ. Press, Princeton, NJ, 1970, xiv+290 pp. | MR | MR | Zbl | Zbl
[5] D. H. Armitage, “Reflection principles for harmonic and polyharmonic functions”, J. Math. Anal. Appl., 65:1 (1978), 44–55 | DOI | MR | Zbl
[6] D. Khavinson, H. S. Shapiro, “Remarks on the reflection principle for harmonic functions”, J. Anal. Math., 54 (1990), 60–76 | DOI | MR | Zbl
[7] D. Khavinson, “On reflection of harmonic Functions in surfaces of revolution”, Complex Variables Theory Appl., 17:1-2 (1991), 7–14 | DOI | MR | Zbl
[8] P. Ebenfelt, D. Khavinson, “On point-to-point reflection of harmonic functions across real-analytic hypersurfaces in $\mathbb R^n$”, J. Anal. Math., 68 (1996), 145–182 | DOI | MR | Zbl
[9] S. J. Gardiner, H. Render, “A reflection result for harmonic functions which vanish on a cylindrical surface”, J. Math. Anal. Appl., 443:1 (2016), 81–91 | DOI | MR | Zbl
[10] E. Schippers, W. Staubach, “Harmonic reflection in quasicircles and well-posedness of a Riemann–Hilbert problem on quasidisks”, J. Math. Anal. Appl., 448:2 (2017), 864–884 | DOI | MR | Zbl
[11] B. P. Belinskiy, T. V. Savina, “The Schwarz reflection principle for harmonic functions in $\mathbb R^2$ subject to the Robin condition”, J. Math. Anal. Appl., 348:2 (2008), 685–691 | DOI | MR | Zbl
[12] F. Y. Maeda, N. Suzuki, “The integrability of superharmonic functions on Lipschitz domains”, Bull. London Math. Soc., 21:3 (1989), 270–278 | DOI | MR | Zbl
[13] K. Miller, “Extremal barriers on cones with Phragmèn–Lindelöf theorems and other applications”, Ann. Mat. Pura Appl. (4), 90 (1971), 297–329 | DOI | MR | Zbl
[14] J. Mateu, J. Orobitg, “Lipschitz approximation by harmonic functions and some applications to spectral sinthesis”, Indiana Univ. Math. J., 39:3 (1990), 703–736 | DOI | MR | Zbl
[15] J. Verdera, “$C^m$-approximation by solutions of elliptic equations, and Calderón–Zygmund operators”, Duke Math. J., 55:1 (1987), 157–187 | DOI | MR | Zbl
[16] P. V. Paramonov, “$C^m$-approximations by harmonic polynomials on compact sets in $\mathbb{R}^n$”, Russian Acad. Sci. Sb. Math., 78:1 (1994), 231–251 | DOI | MR | Zbl
[17] M. Ya. Mazalov, P. V. Paramonov, K. Yu. Fedorovskiy, “Conditions for $C^m$-approximability of functions by solutions of elliptic equations”, Russian Math. Surveys, 67:6 (2012), 1023–1068 | DOI | DOI | MR | Zbl