On $C^m$-reflection of harmonic functions and $C^m$-approximation by harmonic polynomials
Sbornik. Mathematics, Tome 211 (2020) no. 8, pp. 1159-1170 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We obtain several new sharp $C^m$-continuity conditions, both necessary and sufficient, for operators of harmonic reflection of functions over boundaries of simple Carathéodory domains in $\mathbb R^N$. These results are based on a new criterion (also obtained in this paper) for $C^m$-continuity of the Poisson operator in the aforesaid domains. As corollaries, we give new sufficient conditions for $C^m$-approximability of functions by harmonic polynomials on boundaries of simple Carathéodory domains in $\mathbb R^N$. Bibliography: 17 titles.
Keywords: Poisson operator, harmonic reflection operator, $C^m$-approximation by harmonic polynomials.
Mots-clés : simple Carathéodory domain, Lipschitz-Hölder spaces
@article{SM_2020_211_8_a3,
     author = {P. V. Paramonov and K. Yu. Fedorovskiy},
     title = {On $C^m$-reflection of harmonic functions and $C^m$-approximation by harmonic polynomials},
     journal = {Sbornik. Mathematics},
     pages = {1159--1170},
     year = {2020},
     volume = {211},
     number = {8},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2020_211_8_a3/}
}
TY  - JOUR
AU  - P. V. Paramonov
AU  - K. Yu. Fedorovskiy
TI  - On $C^m$-reflection of harmonic functions and $C^m$-approximation by harmonic polynomials
JO  - Sbornik. Mathematics
PY  - 2020
SP  - 1159
EP  - 1170
VL  - 211
IS  - 8
UR  - http://geodesic.mathdoc.fr/item/SM_2020_211_8_a3/
LA  - en
ID  - SM_2020_211_8_a3
ER  - 
%0 Journal Article
%A P. V. Paramonov
%A K. Yu. Fedorovskiy
%T On $C^m$-reflection of harmonic functions and $C^m$-approximation by harmonic polynomials
%J Sbornik. Mathematics
%D 2020
%P 1159-1170
%V 211
%N 8
%U http://geodesic.mathdoc.fr/item/SM_2020_211_8_a3/
%G en
%F SM_2020_211_8_a3
P. V. Paramonov; K. Yu. Fedorovskiy. On $C^m$-reflection of harmonic functions and $C^m$-approximation by harmonic polynomials. Sbornik. Mathematics, Tome 211 (2020) no. 8, pp. 1159-1170. http://geodesic.mathdoc.fr/item/SM_2020_211_8_a3/

[1] P. V. Paramonov, “O $\operatorname{Lip}^m$- i $C^m$-otrazhenii garmonicheskikh funktsii otnositelno granits oblastei Karateodori v $\mathbb R^2$”, Vestn. MGTU im. N. E. Baumana. Ser. Estestvennye nauki, 2018, no. 4, 36–45 | DOI

[2] K. Fedorovskiy, P. Paramonov, “On $\operatorname{Lip}^m$-reflection of harmonic functions over boundaries of simple Carathéodory domains”, Anal. Math. Phys., 9:3 (2019), 1031–1042 | DOI | MR | Zbl

[3] H. Lebesgue, “Sur le problème de Dirichlet”, Rend. Circ. Mat. Palermo, 24 (1907), 371–402 | DOI | Zbl

[4] E. M. Stein, Singular integrals and differentiability properties of functions, Princeton Math. Ser., 30, Princeton Univ. Press, Princeton, NJ, 1970, xiv+290 pp. | MR | MR | Zbl | Zbl

[5] D. H. Armitage, “Reflection principles for harmonic and polyharmonic functions”, J. Math. Anal. Appl., 65:1 (1978), 44–55 | DOI | MR | Zbl

[6] D. Khavinson, H. S. Shapiro, “Remarks on the reflection principle for harmonic functions”, J. Anal. Math., 54 (1990), 60–76 | DOI | MR | Zbl

[7] D. Khavinson, “On reflection of harmonic Functions in surfaces of revolution”, Complex Variables Theory Appl., 17:1-2 (1991), 7–14 | DOI | MR | Zbl

[8] P. Ebenfelt, D. Khavinson, “On point-to-point reflection of harmonic functions across real-analytic hypersurfaces in $\mathbb R^n$”, J. Anal. Math., 68 (1996), 145–182 | DOI | MR | Zbl

[9] S. J. Gardiner, H. Render, “A reflection result for harmonic functions which vanish on a cylindrical surface”, J. Math. Anal. Appl., 443:1 (2016), 81–91 | DOI | MR | Zbl

[10] E. Schippers, W. Staubach, “Harmonic reflection in quasicircles and well-posedness of a Riemann–Hilbert problem on quasidisks”, J. Math. Anal. Appl., 448:2 (2017), 864–884 | DOI | MR | Zbl

[11] B. P. Belinskiy, T. V. Savina, “The Schwarz reflection principle for harmonic functions in $\mathbb R^2$ subject to the Robin condition”, J. Math. Anal. Appl., 348:2 (2008), 685–691 | DOI | MR | Zbl

[12] F. Y. Maeda, N. Suzuki, “The integrability of superharmonic functions on Lipschitz domains”, Bull. London Math. Soc., 21:3 (1989), 270–278 | DOI | MR | Zbl

[13] K. Miller, “Extremal barriers on cones with Phragmèn–Lindelöf theorems and other applications”, Ann. Mat. Pura Appl. (4), 90 (1971), 297–329 | DOI | MR | Zbl

[14] J. Mateu, J. Orobitg, “Lipschitz approximation by harmonic functions and some applications to spectral sinthesis”, Indiana Univ. Math. J., 39:3 (1990), 703–736 | DOI | MR | Zbl

[15] J. Verdera, “$C^m$-approximation by solutions of elliptic equations, and Calderón–Zygmund operators”, Duke Math. J., 55:1 (1987), 157–187 | DOI | MR | Zbl

[16] P. V. Paramonov, “$C^m$-approximations by harmonic polynomials on compact sets in $\mathbb{R}^n$”, Russian Acad. Sci. Sb. Math., 78:1 (1994), 231–251 | DOI | MR | Zbl

[17] M. Ya. Mazalov, P. V. Paramonov, K. Yu. Fedorovskiy, “Conditions for $C^m$-approximability of functions by solutions of elliptic equations”, Russian Math. Surveys, 67:6 (2012), 1023–1068 | DOI | DOI | MR | Zbl