Topological classification of Hamiltonian systems on two-dimensional noncompact manifolds
Sbornik. Mathematics, Tome 211 (2020) no. 8, pp. 1127-1158
Voir la notice de l'article provenant de la source Math-Net.Ru
We construct a complete topological invariant of foliations of finite type defined by smooth functions on two-dimensional noncompact orientable manifolds. In particular, we describe a complete topological classification of noncompact bifurcations of such foliations. We establish a natural one-to-one correspondence between the set of all such bifurcations and the set of oriented coloured graphs of a special form. As a consequence, we obtain the Liouville and trajectory classifications of Hamiltonian systems of finite type on noncompact two-dimensional manifolds.
Bibliography: 25 titles.
Keywords:
Hamiltonian system, topological classification, trajectory equivalence, noncompact atom, $f$-graph.
@article{SM_2020_211_8_a2,
author = {S. S. Nikolaenko},
title = {Topological classification of {Hamiltonian} systems on two-dimensional noncompact manifolds},
journal = {Sbornik. Mathematics},
pages = {1127--1158},
publisher = {mathdoc},
volume = {211},
number = {8},
year = {2020},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SM_2020_211_8_a2/}
}
TY - JOUR AU - S. S. Nikolaenko TI - Topological classification of Hamiltonian systems on two-dimensional noncompact manifolds JO - Sbornik. Mathematics PY - 2020 SP - 1127 EP - 1158 VL - 211 IS - 8 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/SM_2020_211_8_a2/ LA - en ID - SM_2020_211_8_a2 ER -
S. S. Nikolaenko. Topological classification of Hamiltonian systems on two-dimensional noncompact manifolds. Sbornik. Mathematics, Tome 211 (2020) no. 8, pp. 1127-1158. http://geodesic.mathdoc.fr/item/SM_2020_211_8_a2/