Waveguide with double threshold resonance at a simple threshold
Sbornik. Mathematics, Tome 211 (2020) no. 8, pp. 1080-1126 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

A threshold resonance generated by an almost standing wave occurring at a threshold — a solution of the problem that do not decay at infinity, but rather stabilizes there — brings about various anomalies in the diffraction pattern at near-threshold frequencies. Examples when a simple threshold resonance occurs or does not occur are trivial. For the first time an acoustic waveguide (the Neumann spectral problem for the Laplace operator) of a special shape is constructed in which there is a maximum possible number (namely two) of linearly independent almost standing waves at a threshold (equal to a simple eigenvalue of the model problem on the cross-section of the cylindrical outlets to infinity). Effects in the scattering problem for acoustic waves, which are caused by these standing waves are discussed. Bibliography: 54 titles.
Keywords: acoustic waveguide, double threshold resonance, almost standing waves, asymptotic analysis, near-threshold anomalies, weighted spaces with detached asymptotics.
@article{SM_2020_211_8_a1,
     author = {S. A. Nazarov},
     title = {Waveguide with double threshold~resonance at a~simple threshold},
     journal = {Sbornik. Mathematics},
     pages = {1080--1126},
     year = {2020},
     volume = {211},
     number = {8},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2020_211_8_a1/}
}
TY  - JOUR
AU  - S. A. Nazarov
TI  - Waveguide with double threshold resonance at a simple threshold
JO  - Sbornik. Mathematics
PY  - 2020
SP  - 1080
EP  - 1126
VL  - 211
IS  - 8
UR  - http://geodesic.mathdoc.fr/item/SM_2020_211_8_a1/
LA  - en
ID  - SM_2020_211_8_a1
ER  - 
%0 Journal Article
%A S. A. Nazarov
%T Waveguide with double threshold resonance at a simple threshold
%J Sbornik. Mathematics
%D 2020
%P 1080-1126
%V 211
%N 8
%U http://geodesic.mathdoc.fr/item/SM_2020_211_8_a1/
%G en
%F SM_2020_211_8_a1
S. A. Nazarov. Waveguide with double threshold resonance at a simple threshold. Sbornik. Mathematics, Tome 211 (2020) no. 8, pp. 1080-1126. http://geodesic.mathdoc.fr/item/SM_2020_211_8_a1/

[1] R. W. Wood, “On a remarkable case of uneven distribution of light in a difraction grating spectrum”, Proc. Phys. Soc. London, 18 (1902), 269–275 | DOI

[2] L. A. Vainshtein, Teoriya difraktsii i metod faktorizatsii, Sovetskoe radio, M., 1966, 431 pp.

[3] S. A. Nazarov, “Asymptotic expansions of eigenvalues in the continuous spectrum of a regularly perturbed quantum waveguide”, Theoret. and Math. Phys., 167:2 (2011), 606–627 | DOI | DOI | MR | Zbl

[4] S. A. Nazarov, “Enhancement and smoothing of near-threshold wood anomalies in an acoustic waveguide”, Acoustical Phys., 64:5 (2018), 535–547

[5] S. A. Nazarov, “Various manifestations of Wood anomalies in locally distorted quantum waveguides”, Comput. Math. Math. Phys., 58:11 (2018), 1838–1855 | DOI | DOI | MR | Zbl

[6] S. A. Nazarov, “Almost standing waves in a periodic waveguide with resonator, and near-threshold eigenvalues”, St. Petersburg Math. J., 28:3 (2017), 377–410 | DOI | MR | Zbl

[7] S. Molchanov, B. Vainberg, “Scattering solutions in networks of thin fibers: small diameter asymptotics”, Comm. Math. Phys., 273:2 (2007), 533–559 | DOI | MR | Zbl

[8] D. Grieser, “Spectra of graph neighborhoods and scattering”, Proc. Lond. Math. Soc. (3), 97:3 (2008), 718–752 | DOI | MR | Zbl

[9] K. Pankrashkin, “Eigenvalue inequalities and absence of threshold resonances for waveguide junctions”, J. Math. Anal. Appl., 449:1 (2017), 907–925 | DOI | MR | Zbl

[10] F. L. Bakharev, S. A. Nazarov, “Kriterii otsutstviya i nalichiya ogranichennykh reshenii na poroge nepreryvnogo spektra v ob'edinenii kvantovykh volnovodov”, Algebra i analiz (to appear)

[11] W. G. Mazja, S. A. Nazarov, B. A. Plamenewski, Asymptotische Theorie elliptischer Randwertaufgaben in singulär gestörten Gebieten, v. 1, 2, Math. Lehrbücher Monogr. II. Abt. Math. Monogr., 82, 83, Akademie-Verlag, Berlin, 1991, 432 pp., 319 pp. | MR | MR | MR | MR | Zbl

[12] S. A. Nazarov, Asimptoticheskaya teoriya tonkikh plastin i sterzhnei. Ponizhenie razmernosti i integralnye otsenki, Nauchnaya kniga, Novosibirsk, 2002, 408 pp.

[13] M. van Dyke, Perturbation methods in fluid mechanics, Appl. Math. Mech., 8, Academic Press, New York–London, 1964, x+229 pp. | MR | Zbl | Zbl

[14] A. M. Il'in, Matching of asymptotic expansions of solutions of boundary value problems, Transl. Math. Monogr., 102, Amer. Math. Soc., Providence, RI, 1992, x+281 pp. | MR | MR | Zbl | Zbl

[15] M. I. Višik, L. A. Lyusternik, “Regular degeneration and boundary layer for linear differential equations with small parameter”, Amer. Math. Soc. Transl. Ser. 2, 20, Amer. Math. Soc., Providence, RI, 1962, 239–364 | DOI | MR | MR | Zbl | Zbl

[16] S. A. Nazarov, “Bounded solutions in a $\mathrm{T}$-shaped waveguide and the spectral properties of the Dirichlet ladder”, Comput. Math. Math. Phys., 54:8 (2014), 1261–1279 | DOI | DOI | MR | Zbl

[17] S. A. Nazarov, “The spectra of rectangular lattices of quantum waveguides”, Izv. Math., 81:1 (2017), 29–90 | DOI | DOI | MR | Zbl

[18] S. A. Nazarov, B. A. Plamenevsky, Elliptic problems in domains with piecewise smooth boundaries, De Gruyter Exp. Math., 13, Walter de Gruyter Co., Berlin, 1994, viii+525 pp. | DOI | MR | Zbl

[19] S. Nazarov, “Properties of spectra of boundary value problems in cylindrical and quasicylindrical domains”, Sobolev spaces in mathematics, v. II, Int. Math. Ser. (N.Y.), 9, Springer, New York, 2008, 261–309 | DOI | MR | Zbl

[20] V. A. Kondrat'ev, “Boundary problems for elliptic equations in domains with conical or angular points”, Trans. Moscow Math. Soc., 16 (1967), 227–313 | MR | Zbl

[21] L. Chesnel, S. A. Nazarov, J. Taskinen, “Surface waves in a channel with thin tunnels and wells at the bottom: non-reflecting underwater topography”, Asymptotic Anal., 118:1-2 (2020), 81–122

[22] V. A. Kozlov, V. G. Maz'ya, A. B. Movchan, “Asymptotic analysis of a mixed boundary value problem in a multi-structure”, Asymptotic Anal., 8:2 (1994), 105–143 | DOI | MR | Zbl

[23] S. A. Nazarov, “Junctions of singularly degenerating domains with different limit dimensions. I”, J. Math. Sci. (N.Y.), 80:5 (1996), 1989–2034 | DOI | MR | Zbl

[24] S. A. Nazarov, “Junctions of singularly degenerating domains with different limit dimensions. II”, J. Math. Sci. (N.Y.), 97:3 (1999), 4085–4108 | DOI | MR | Zbl

[25] R. R. Gadyl'shin, “On the eigenvalues of a “dumb-bell with a thin handle””, Izv. Math., 69:2 (2005), 265–329 | DOI | DOI | MR | Zbl

[26] V. A. Kozlov, V. G. Maz'ya, A. B. Movchan, Asymptotic analysis of fields in multi-structures, Oxford Math. Monogr., The Clarendon Press, Oxford Univ. Press, New York, 1999, xvi+282 pp. | MR | Zbl

[27] J. T. Beale, “Scattering frequencies of resonators”, Comm. Pure Appl. Math., 26:4 (1973), 549–563 | DOI | MR | Zbl

[28] A. A. Arsen'ev, “The existence of resonance poles and scattering resonances in the case of boundary conditions of the second and third kind”, U.S.S.R. Comput. Math. Math. Phys., 16:3 (1976), 171–177 | DOI | MR | Zbl

[29] R. R. Gadyl'shin, “Characteristic frequencies of bodies with thin spikes. I. Convergence and estimates”, Math. Notes, 54:6 (1993), 1192–1199 | DOI | MR | Zbl

[30] S. A. Nazarov, J. Sokolowski, “The topological derivative of the Dirichlet integral under formation of a thin ligament”, Siberian Math. J., 45:2 (2004), 341–355 | DOI | MR | Zbl

[31] S. A. Nazarov, “Elliptic boundary value problems in hybrid domains”, Funct. Anal. Appl., 38:4 (2004), 283–297 | DOI | DOI | MR | Zbl

[32] P. Joly, S. Tordeux, “Asymptotic analysis of an approximate model for time harmonic waves in media with thin slots”, M2AN Math. Model. Numer. Anal., 40:1 (2006), 63–97 | DOI | MR | Zbl

[33] P. Joly, S. Tordeux, “Matching of asymptotic expansions for wave propagation in media with thin slots. I. The asymptotic expansion”, Multiscale Model. Simul., 5:1 (2006), 304–336 | DOI | MR | Zbl

[34] P. Joly, S. Tordeux, “Matching of asymptotic expansions for waves propagation in media with thin slots. II. The error estimates”, M2AN Math. Model. Numer. Anal., 42:2 (2008), 193–221 | DOI | MR | Zbl

[35] S. A. Nazarov, “Modeling of a singularly perturbed spectral problem by means of self-adjoint extensions of the operators of the limit problems”, Funct. Anal. Appl., 49:1 (2015), 25–39 | DOI | DOI | MR | Zbl

[36] V. G. Mazja, B. A. Plamenevskii, “On the coefficients in the asymptotics of solutions of elliptic boundary value problems in domains with conical points”, Elliptic boundary value problems, Amer. Math. Soc. Transl. Ser. 2, 123, Amer. Math. Soc., Providence, RI, 1984, 57–88 | DOI | DOI | MR | MR | Zbl | Zbl

[37] V. G. Mazja, B. A. Plamenevskii, “Estimates in $L_p$ and in Hölder classes and the Miranda–Agmon maximum principle for solutions of elliptic boundary value problems in domains with singular points on the boundary”, Elliptic boundary value problems, Amer. Math. Soc. Transl. Ser. 2, 123, Amer. Math. Soc., Providence, RI, 1984, 1–56 | DOI | DOI | MR | MR | Zbl | Zbl

[38] S. A. Nazarov, “The polynomial property of self-adjoint elliptic boundary-value problems and an algebraic description of their attributes”, Russian Math. Surveys, 54:5 (1999), 947–1014 | DOI | DOI | MR | Zbl

[39] V. A. Kozlov, V. G. Maz'ya, J. Rossmann, Elliptic boundary value problems in domains with point singularities, Math. Surveys Monogr., 52, Amer. Math. Soc., Providence, RI, 1997, x+414 pp. | MR | Zbl

[40] S. A. Nazarov, “Enforced stability of a simple eigenvalue in the continuous spectrum of a waveguide”, Funct. Anal. Appl., 47:3 (2013), 195–209 | DOI | DOI | MR | Zbl

[41] N. A. Umov, Uravneniya dvizheniya energii v telakh, Tip. Ulrikha i Shultse, Odessa, 1874, 58 pp.

[42] J. H. Poynting, “On the transfer of energy in the electromagnetic field”, Philos. Trans. R. Soc. Lond., 175 (1884), 343–361 | DOI | Zbl

[43] L. I. Mandelshtam, Lektsii po optike, teorii otnositelnosti i kvantovoi mekhanike, Sb. trudov, v. 2, Izd-vo AN SSSR, M., 1947, 372 pp. | MR

[44] I. I. Vorovich, V. A. Babeshko, Dinamicheskie smeshannye zadachi teorii uprugosti dlya neklassicheskikh oblastei, Nauka, M., 1979, 320 pp. | MR | Zbl

[45] R. Mittra, S. W. Lee, Analytical techniques in the theory of guided waves, Macmillan Series in Electrical Science, The Macmillan Co., New York; Collier–Macmillan Ltd., London, 1971, ix+302 pp. | Zbl | Zbl

[46] A. N. Kolmogorov, S. V. Fomin, Elements of the theory of functions and functional analysis, v. I, II, Graylock Press, Albany, N.Y., 1957, 1961, ix+129 pp., ix+128 pp. | MR | MR | MR | Zbl | Zbl

[47] O. A. Ladyzhenskaya, The boundary value problems of mathematical physics, Appl. Math. Sci., 49, Springer-Verlag, New York, 1985, xxx+322 pp. | DOI | MR | MR | Zbl | Zbl

[48] S. A. Nazarov, “Struktura reshenii ellipticheskikh kraevykh zadach v tonkikh oblastyakh”, Vestn. LGU. Ser. 1. Matem., mekh., astronom., 1982, no. 7(2), 65–68 | MR | Zbl

[49] Yu. D. Golovatyĭ, S. A. Nazarov, O. A. Oleĭnik, “Asymptotic expansions of eigenvalues and eigenfunctions in problems on oscillations of a medium with concentrated perturbations”, Proc. Steklov Inst. Math., 192 (1992), 43–63 | MR | Zbl

[50] S. A. Nazarov, “Scattering anomalies in a resonator above the thresholds of the continuous spectrum”, Sb. Math., 206:6 (2015), 782–813 | DOI | DOI | MR | Zbl

[51] A. I. Korolkov, S. A. Nazarov, A. V. Shanin, “Stabilizing solutions at thresholds of the continuous spectrum and anomalous transmission of waves”, ZAMM Z. Angew. Math. Mech., 96:10 (2016), 1245–1260 | DOI | MR

[52] L. Bers, F. John, M. Schechter, Partial differential equations, With special lectures by L. Garding and A. N. Milgram (Boulder, Colorado, 1957), Lectures in Appl. Math., III, Interscience Publishers John Wiley Sons, Inc., New York–London–Sydney, 1964, xiii+343 pp. | MR | MR | Zbl | Zbl

[53] W. Seabrook, Doctor Wood, modern wizard of the laboratory, Harcourt Brace, New York, 1941

[54] A. Hessel, A. A. Oliner, “A new theory of Wood's anomalies on optical gratings”, Appl. Optics, 4:10 (1965), 1275–1297 | DOI