Encodings of trajectories and invariant measures
Sbornik. Mathematics, Tome 211 (2020) no. 7, pp. 1041-1064 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We consider a discrete dynamical system on a compact manifold $M$ generated by a homeomorphism $f$. Let $C=\{M(i)\}$ be a finite covering of $M$ by closed cells. The symbolic image of a dynamical system is a directed graph $G$ with vertices corresponding to cells in which vertices $i$ and $j$ are joined by an arc $i\to j$ if the image $f(M(i))$ intersects $M(j)$. We show that the set of paths of the symbolic image converges to the set of trajectories of the system in the Tychonoff topology as the diameter of the covering tends to zero. For a cycle on $G$ going through different vertices, a simple flow is by definition a uniform distribution on arcs of this cycle. We show that simple flows converge to ergodic measures in the weak topology as the diameter of the covering tends to zero. Bibliography: 28 titles.
Keywords: pseudotrajectory, recurrent trajectory, chain recurrent set, ergodic measure, symbolic image, flow on a graph.
@article{SM_2020_211_7_a6,
     author = {G. S. Osipenko},
     title = {Encodings of trajectories and invariant measures},
     journal = {Sbornik. Mathematics},
     pages = {1041--1064},
     year = {2020},
     volume = {211},
     number = {7},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2020_211_7_a6/}
}
TY  - JOUR
AU  - G. S. Osipenko
TI  - Encodings of trajectories and invariant measures
JO  - Sbornik. Mathematics
PY  - 2020
SP  - 1041
EP  - 1064
VL  - 211
IS  - 7
UR  - http://geodesic.mathdoc.fr/item/SM_2020_211_7_a6/
LA  - en
ID  - SM_2020_211_7_a6
ER  - 
%0 Journal Article
%A G. S. Osipenko
%T Encodings of trajectories and invariant measures
%J Sbornik. Mathematics
%D 2020
%P 1041-1064
%V 211
%N 7
%U http://geodesic.mathdoc.fr/item/SM_2020_211_7_a6/
%G en
%F SM_2020_211_7_a6
G. S. Osipenko. Encodings of trajectories and invariant measures. Sbornik. Mathematics, Tome 211 (2020) no. 7, pp. 1041-1064. http://geodesic.mathdoc.fr/item/SM_2020_211_7_a6/

[1] G. Osipenko, Dynamical systems, graphs, and algorithms, Lecture Notes in Math., 1889, Springer-Verlag, Berlin, 2007, xii+283 pp. | DOI | MR | Zbl

[2] G. S. Osipenko, N. B. Ampilova, Vvedenie v simvolicheskii analiz dinamicheskikh sistem, Izd-vo S.-Peterburgskogo un-ta, SPb., 2005, 240 pp.

[3] V. M. Alekseev, “Simvolicheskaya dinamika”, XI matematicheskaya shkola, In-t matem. AN USSR, Kiev, 1976, 5–210 | MR

[4] D. Lind, B. Marcus, An introduction to symbolic dynamics and coding, Cambridge Univ. Press, Cambridge, 1995, xvi+495 pp. | DOI | MR | Zbl

[5] C. Robinson, Dynamical systems. Stability, symbolic dynamics, and chaos, Stud. Adv. Math., CRC Press, Boca Raton, FL, 1995, xii+468 pp. | MR | Zbl

[6] W. Krieger, “On flow-equivalence of $\mathscr R$-graph shifts”, Münster J. Math., 8:1 (2015), 229–239 | DOI | MR | Zbl

[7] W. Krieger, “On subshift presentations”, Ergodic Theory Dynam. Systems, 37:4 (2017), 1253–1290 | DOI | MR | Zbl

[8] K. Matsumoto, “A class of simple $C^*$-algebras arising from certain non-sofic subshifts”, Ergodic Theory Dynam. Systems, 31:2 (2011), 459–482 | DOI | MR | Zbl

[9] C. S. Hsu, Cell-to-cell mapping. A method of global analysis for nonlinear systems, Appl. Math. Sci., 64, Springer-Verlag, New York, 1987, xii+352 pp. | DOI | MR | Zbl

[10] G. S. Osipenko, “O simvolicheskom obraze dinamicheskoi sistemy”, Kraevye zadachi, Permskii politekh. in-t, Perm, 1983, 101–105 | MR | Zbl

[11] V. V. Prasolov, Elements of combinatorial and differential topology, Grad. Stud. Math., 74, Amer. Math. Soc., Providence, RI, 2006, xii+331 pp. | DOI | MR | Zbl

[12] N. Kryloff, N. Bogoliouboff, “La théorie générale de la mesure dans son application à l'étude des systèmes dynamiques de la mécanique non linéaire”, Ann. of Math. (2), 38:1 (1937), 65–113 | DOI | MR | Zbl

[13] A. Katok, B. Hasselblatt, Introduction to the modern theory of dynamical systems, Encyclopedia Math. Appl., 54, Cambridge Univ. Press, Cambridge, 1995, xviii+802 pp. | DOI | MR | Zbl

[14] V. V. Nemytskii, V. V. Stepanov, Qualitative theory of differential equations, Princeton Math. Ser., 22, Princeton Univ. Press, Princeton, NJ, 1960, viii+523 pp. | MR | MR | Zbl | Zbl

[15] P. Billingsley, Ergodic theory and information, John Wiley Sons, Inc., New York, 1965, xiii+195 pp. | MR | MR | Zbl | Zbl

[16] K. Gelfert, D. Kwietniak, “On density of ergodic measures and generic points”, Ergodic Theory Dynam. Systems, 38:5 (2018), 1745–1767 | DOI | MR | Zbl

[17] L. J. Díaz, K. Gelfert, M. Rams, “Topological and ergodic aspects of partially hyperbolic diffeomorphisms and nonhyperbolic step skew products”, Proc. Steklov Inst. Math., 297 (2017), 98–115 | DOI | DOI | MR | Zbl

[18] M. Boshernitzan, G. Kolesnik, A. Quas, M. Wierdl, “Ergodic averaging sequences”, J. Anal. Math., 95 (2005), 63–103 | DOI | MR | Zbl

[19] G. Osipenko, “Symbolic images and invariant measures of dynamical systems”, Ergodic Theory Dynam. Systems, 30:4 (2010), 1217–1237 | DOI | MR | Zbl

[20] Th. H. Cormen, Ch. E. Leiserson, R. L. Rivest, C. Stein, Introduction to algorithms, 2nd ed., MIT Press, Cambridge, MA; McGraw-Hill Book Co., Boston, MA, 2001, xxii+1180 pp. | MR | Zbl

[21] A. Levitin, Introduction to the design and analysis of agorithms, Addison-Wesley, Boston, MA, 2003, 548 pp.

[22] A. P. Afanasev, C. M. Dzyuba, A. P. Pyanov, “Tipicheskoe povedenie dvizhenii dinamicheskikh i nepreryvnykh periodicheskikh sistem: novyi vzglyad na ustoichivost po Puassonu”, Tr. ISA RAN, 25 (2006), 148–165

[23] E. S. Polovinkin, M. V. Balashov, Elementy vypuklogo i silno vypuklogo analiza, Fizmatlit, M., 2004, 416 pp. | Zbl

[24] P. Billingsley, Convergence of probability measures, John Wiley Sons, Inc., New York–London–Sydney, 1968, xii+253 pp. | MR | MR | Zbl

[25] G. S. Osipenko, “The spectrum of the averaging of a function over pseudotrajectories of a dynamical system”, Sb. Math., 209:8 (2018), 1211–1233 | DOI | DOI | MR | Zbl

[26] G. S. Osipenko, J. V. Romanovsky, N. B. Ampilova, E. I. Petrenko, “Computation of the Morse spectrum”, J. Math. Sci. (N.Y.), 120:2 (2004), 1155–1166 | DOI | MR | Zbl

[27] R. M. Karp, “A characterization of the minimum cycle mean in a digraph”, Discrete Math., 23:3 (1978), 309–311 | DOI | MR | Zbl

[28] J. Cochet-Terrasson, G. Cohen, S. Gaubert, M. McGettrick, J.-P. Quadrat, “Numerical computation of spectral elements in max-plus algebra”, 5th IFAC conference on system structure and control 1998 (SSC'98) (Nantes, 1998), IFAC Proceedings Volumes, 31, no. 18, 1998, 667–674 | DOI