Encodings of trajectories and invariant measures
Sbornik. Mathematics, Tome 211 (2020) no. 7, pp. 1041-1064

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider a discrete dynamical system on a compact manifold $M$ generated by a homeomorphism $f$. Let $C=\{M(i)\}$ be a finite covering of $M$ by closed cells. The symbolic image of a dynamical system is a directed graph $G$ with vertices corresponding to cells in which vertices $i$ and $j$ are joined by an arc $i\to j$ if the image $f(M(i))$ intersects $M(j)$. We show that the set of paths of the symbolic image converges to the set of trajectories of the system in the Tychonoff topology as the diameter of the covering tends to zero. For a cycle on $G$ going through different vertices, a simple flow is by definition a uniform distribution on arcs of this cycle. We show that simple flows converge to ergodic measures in the weak topology as the diameter of the covering tends to zero. Bibliography: 28 titles.
Keywords: pseudotrajectory, recurrent trajectory, chain recurrent set, ergodic measure, symbolic image, flow on a graph.
@article{SM_2020_211_7_a6,
     author = {G. S. Osipenko},
     title = {Encodings of trajectories and invariant measures},
     journal = {Sbornik. Mathematics},
     pages = {1041--1064},
     publisher = {mathdoc},
     volume = {211},
     number = {7},
     year = {2020},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2020_211_7_a6/}
}
TY  - JOUR
AU  - G. S. Osipenko
TI  - Encodings of trajectories and invariant measures
JO  - Sbornik. Mathematics
PY  - 2020
SP  - 1041
EP  - 1064
VL  - 211
IS  - 7
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SM_2020_211_7_a6/
LA  - en
ID  - SM_2020_211_7_a6
ER  - 
%0 Journal Article
%A G. S. Osipenko
%T Encodings of trajectories and invariant measures
%J Sbornik. Mathematics
%D 2020
%P 1041-1064
%V 211
%N 7
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SM_2020_211_7_a6/
%G en
%F SM_2020_211_7_a6
G. S. Osipenko. Encodings of trajectories and invariant measures. Sbornik. Mathematics, Tome 211 (2020) no. 7, pp. 1041-1064. http://geodesic.mathdoc.fr/item/SM_2020_211_7_a6/