@article{SM_2020_211_7_a6,
author = {G. S. Osipenko},
title = {Encodings of trajectories and invariant measures},
journal = {Sbornik. Mathematics},
pages = {1041--1064},
year = {2020},
volume = {211},
number = {7},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SM_2020_211_7_a6/}
}
G. S. Osipenko. Encodings of trajectories and invariant measures. Sbornik. Mathematics, Tome 211 (2020) no. 7, pp. 1041-1064. http://geodesic.mathdoc.fr/item/SM_2020_211_7_a6/
[1] G. Osipenko, Dynamical systems, graphs, and algorithms, Lecture Notes in Math., 1889, Springer-Verlag, Berlin, 2007, xii+283 pp. | DOI | MR | Zbl
[2] G. S. Osipenko, N. B. Ampilova, Vvedenie v simvolicheskii analiz dinamicheskikh sistem, Izd-vo S.-Peterburgskogo un-ta, SPb., 2005, 240 pp.
[3] V. M. Alekseev, “Simvolicheskaya dinamika”, XI matematicheskaya shkola, In-t matem. AN USSR, Kiev, 1976, 5–210 | MR
[4] D. Lind, B. Marcus, An introduction to symbolic dynamics and coding, Cambridge Univ. Press, Cambridge, 1995, xvi+495 pp. | DOI | MR | Zbl
[5] C. Robinson, Dynamical systems. Stability, symbolic dynamics, and chaos, Stud. Adv. Math., CRC Press, Boca Raton, FL, 1995, xii+468 pp. | MR | Zbl
[6] W. Krieger, “On flow-equivalence of $\mathscr R$-graph shifts”, Münster J. Math., 8:1 (2015), 229–239 | DOI | MR | Zbl
[7] W. Krieger, “On subshift presentations”, Ergodic Theory Dynam. Systems, 37:4 (2017), 1253–1290 | DOI | MR | Zbl
[8] K. Matsumoto, “A class of simple $C^*$-algebras arising from certain non-sofic subshifts”, Ergodic Theory Dynam. Systems, 31:2 (2011), 459–482 | DOI | MR | Zbl
[9] C. S. Hsu, Cell-to-cell mapping. A method of global analysis for nonlinear systems, Appl. Math. Sci., 64, Springer-Verlag, New York, 1987, xii+352 pp. | DOI | MR | Zbl
[10] G. S. Osipenko, “O simvolicheskom obraze dinamicheskoi sistemy”, Kraevye zadachi, Permskii politekh. in-t, Perm, 1983, 101–105 | MR | Zbl
[11] V. V. Prasolov, Elements of combinatorial and differential topology, Grad. Stud. Math., 74, Amer. Math. Soc., Providence, RI, 2006, xii+331 pp. | DOI | MR | Zbl
[12] N. Kryloff, N. Bogoliouboff, “La théorie générale de la mesure dans son application à l'étude des systèmes dynamiques de la mécanique non linéaire”, Ann. of Math. (2), 38:1 (1937), 65–113 | DOI | MR | Zbl
[13] A. Katok, B. Hasselblatt, Introduction to the modern theory of dynamical systems, Encyclopedia Math. Appl., 54, Cambridge Univ. Press, Cambridge, 1995, xviii+802 pp. | DOI | MR | Zbl
[14] V. V. Nemytskii, V. V. Stepanov, Qualitative theory of differential equations, Princeton Math. Ser., 22, Princeton Univ. Press, Princeton, NJ, 1960, viii+523 pp. | MR | MR | Zbl | Zbl
[15] P. Billingsley, Ergodic theory and information, John Wiley Sons, Inc., New York, 1965, xiii+195 pp. | MR | MR | Zbl | Zbl
[16] K. Gelfert, D. Kwietniak, “On density of ergodic measures and generic points”, Ergodic Theory Dynam. Systems, 38:5 (2018), 1745–1767 | DOI | MR | Zbl
[17] L. J. Díaz, K. Gelfert, M. Rams, “Topological and ergodic aspects of partially hyperbolic diffeomorphisms and nonhyperbolic step skew products”, Proc. Steklov Inst. Math., 297 (2017), 98–115 | DOI | DOI | MR | Zbl
[18] M. Boshernitzan, G. Kolesnik, A. Quas, M. Wierdl, “Ergodic averaging sequences”, J. Anal. Math., 95 (2005), 63–103 | DOI | MR | Zbl
[19] G. Osipenko, “Symbolic images and invariant measures of dynamical systems”, Ergodic Theory Dynam. Systems, 30:4 (2010), 1217–1237 | DOI | MR | Zbl
[20] Th. H. Cormen, Ch. E. Leiserson, R. L. Rivest, C. Stein, Introduction to algorithms, 2nd ed., MIT Press, Cambridge, MA; McGraw-Hill Book Co., Boston, MA, 2001, xxii+1180 pp. | MR | Zbl
[21] A. Levitin, Introduction to the design and analysis of agorithms, Addison-Wesley, Boston, MA, 2003, 548 pp.
[22] A. P. Afanasev, C. M. Dzyuba, A. P. Pyanov, “Tipicheskoe povedenie dvizhenii dinamicheskikh i nepreryvnykh periodicheskikh sistem: novyi vzglyad na ustoichivost po Puassonu”, Tr. ISA RAN, 25 (2006), 148–165
[23] E. S. Polovinkin, M. V. Balashov, Elementy vypuklogo i silno vypuklogo analiza, Fizmatlit, M., 2004, 416 pp. | Zbl
[24] P. Billingsley, Convergence of probability measures, John Wiley Sons, Inc., New York–London–Sydney, 1968, xii+253 pp. | MR | MR | Zbl
[25] G. S. Osipenko, “The spectrum of the averaging of a function over pseudotrajectories of a dynamical system”, Sb. Math., 209:8 (2018), 1211–1233 | DOI | DOI | MR | Zbl
[26] G. S. Osipenko, J. V. Romanovsky, N. B. Ampilova, E. I. Petrenko, “Computation of the Morse spectrum”, J. Math. Sci. (N.Y.), 120:2 (2004), 1155–1166 | DOI | MR | Zbl
[27] R. M. Karp, “A characterization of the minimum cycle mean in a digraph”, Discrete Math., 23:3 (1978), 309–311 | DOI | MR | Zbl
[28] J. Cochet-Terrasson, G. Cohen, S. Gaubert, M. McGettrick, J.-P. Quadrat, “Numerical computation of spectral elements in max-plus algebra”, 5th IFAC conference on system structure and control 1998 (SSC'98) (Nantes, 1998), IFAC Proceedings Volumes, 31, no. 18, 1998, 667–674 | DOI