Analytic solutions of convolution equations on convex sets in the complex plane with an open obstacle on the boundary
Sbornik. Mathematics, Tome 211 (2020) no. 7, pp. 1014-1040 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Conditions, including criteria, are established for the existence of a continuous linear right inverse to a surjective convolution operator in the space of germs of analytic functions on a convex subset of the complex plane which has a countable neighbourhood basis consisting of convex domains. These are stated in terms of the existence of special families of subharmonic functions and the boundary behaviour of convex conformal mappings related to the sets in question. Bibliography: 50 titles.
Keywords: space of germs of analytic functions, continuous linear right inverse.
Mots-clés : convolution equation
@article{SM_2020_211_7_a5,
     author = {S. N. Melikhov and L. V. Khanina},
     title = {Analytic solutions of convolution equations on convex sets in the complex plane with an open obstacle on the boundary},
     journal = {Sbornik. Mathematics},
     pages = {1014--1040},
     year = {2020},
     volume = {211},
     number = {7},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2020_211_7_a5/}
}
TY  - JOUR
AU  - S. N. Melikhov
AU  - L. V. Khanina
TI  - Analytic solutions of convolution equations on convex sets in the complex plane with an open obstacle on the boundary
JO  - Sbornik. Mathematics
PY  - 2020
SP  - 1014
EP  - 1040
VL  - 211
IS  - 7
UR  - http://geodesic.mathdoc.fr/item/SM_2020_211_7_a5/
LA  - en
ID  - SM_2020_211_7_a5
ER  - 
%0 Journal Article
%A S. N. Melikhov
%A L. V. Khanina
%T Analytic solutions of convolution equations on convex sets in the complex plane with an open obstacle on the boundary
%J Sbornik. Mathematics
%D 2020
%P 1014-1040
%V 211
%N 7
%U http://geodesic.mathdoc.fr/item/SM_2020_211_7_a5/
%G en
%F SM_2020_211_7_a5
S. N. Melikhov; L. V. Khanina. Analytic solutions of convolution equations on convex sets in the complex plane with an open obstacle on the boundary. Sbornik. Mathematics, Tome 211 (2020) no. 7, pp. 1014-1040. http://geodesic.mathdoc.fr/item/SM_2020_211_7_a5/

[1] V. P. Khavin, “Prostranstva analiticheskikh funktsii”, Itogi nauki. Ser. Matematika. Matem. anal. 1964, VINITI, M., 1966, 76–164 | MR

[2] Yu. F. Korobeinik, “On the countable definability of sets”, Math. Notes, 59:3 (1996), 269–278 | DOI | DOI | MR | Zbl

[3] O. V. Epifanov, “The problem concerning the epimorphicity of a convolution operator in convex domains”, Math. Notes, 16:3 (1974), 837–841 | DOI | MR | Zbl

[4] V. A. Tkačenko, “Equations of convolution type in spaces of analytic functionals”, Math. USSR-Izv., 11:2 (1977), 361–374 | DOI | MR | Zbl

[5] O. V. Epifanov, “Uravnenie svertki v kompleksnoi ploskosti”, Issledovaniya po teorii operatorov, Nauka, Ufa, 1988, 48–58

[6] I. M. Mal'tsev, “On conditions for surjectivity of a convolution operator in a complex domain. I. Necessary conditions for surjectivity”, Russian Math. (Iz. VUZ), 38:7 (1994), 47–56 | MR | Zbl

[7] I. M. Mal'tsev, “On conditions for the surjectivity of a convolution operator in a complex domain. II. Sufficient conditions and criteria for surjectivity”, Russian Math. (Iz. VUZ), 38:11 (1994), 40–49 | MR | Zbl

[8] Yu. F. Korobe\u inik, “On surjectivity of the convolution operator in spaces of analytic functions”, Siberian Math. J., 38:6 (1997), 1137–1145 | DOI | MR | Zbl

[9] S. V. Znamenskiĭ, E. A. Znamenskaya, “Surjectivity of a convolution operator with a point support in the space of functions holomorphic on an arbitrary set in $\mathbb C$”, Dokl. Math., 63:1 (2001), 85–87 | MR | Zbl

[10] B. A. Taylor, R. Meise, D. Vogt, “Characterization of the linear partial differential operators with constant coefficients that admit a continuous linear right inverse”, Ann. Inst. Fourier (Grenoble), 40:3 (1990), 619–655 | DOI | MR | Zbl

[11] K. Schwerdtfeger, Faltungsoperatoren auf Räumen holomorpher und beliebig oft differenzierbarer Funktionen, Thesis, Düsseldorf Univ., 1982

[12] B. A. Taylor, “Linear extension operators for entire functions”, Michigan Math. J., 29:2 (1982), 185–197 | DOI | MR | Zbl

[13] S. Momm, “Convex univalent functions and continuous linear right inverses”, J. Funct. Anal., 103:1 (1992), 85–103 | DOI | MR | Zbl

[14] S. Momm, “Convolution equations on the analytic functions on convex domains in the plane”, Bull. Sci. Math., 118:3 (1994), 259–270 | MR | Zbl

[15] M. Langenbruch, “Continuous linear right inverses for convolution operators in spaces of real analytic functions”, Studia Math., 110:1 (1994), 65–82 | DOI | MR | Zbl

[16] S. N. Melikhov, S. Momm, “On the linear inverse from right operator for the convolution operator on the spaces of germs of analytical functions on convex compacts in $\mathbb C$”, Russian Math. (Iz. VUZ), 41:5 (1997), 35–45 | MR | Zbl

[17] Yu. F. Korobeinik, “Right inverse for a convolution operator in space of germs of analytic functions on connected subsets of $\mathbb C$”, Sb. Math., 187:1 (1996), 53–80 | DOI | DOI | MR | Zbl

[18] S. N. Melikhov, S. Momm, “Analytic solutions of convolution equations on convex sets with an obstacle in the boundary”, Math. Scand., 86:2 (2000), 293–319 | DOI | MR | Zbl

[19] A. V. Abanin, Le Hai Khoi, “Linear continuous right inverse to convolution operator in spaces of holomorphic functions of polynomial growth”, Russian Math. (Iz. VUZ), 59:1 (2015), 1–10 | DOI | MR | Zbl

[20] U. V. Barkina, S. N. Melikhov, “Ob operatore resheniya dlya differentsialnykh uravnenii beskonechnogo poryadka na vypuklykh mnozhestvakh”, Vladikavk. matem. zhurn., 16:4 (2014), 27–40 | MR | Zbl

[21] R. Meise, B. A. Taylor, “Each non-zero convolution operator on the entire functions admits a continuous linear right inverse”, Math. Z., 197:1 (1988), 139–152 | DOI | MR | Zbl

[22] S. Momm, “Boundary behavior of extremal plurisubharmonic functions”, Acta Math., 172:1 (1994), 51–75 | DOI | MR | Zbl

[23] S. N. Melikhov, S. Momm, “Solution operators for convolution equations on the germs of analytic functions on compact convex sets in $\mathbb C^{N}$”, Studia Math., 117:1 (1995), 79–99 | DOI | MR | Zbl

[24] R. Meise, S. Momm, B. A. Taylor, “Splitting of slowly decreasing ideals in weighted algebras of entire functions”, Complex analysis II (College Park, MD, 1985–86), Lecture Notes in Math., 1276, Springer, Berlin, 1987, 229–252 | DOI | MR | Zbl

[25] M. Langenbruch, S. Momm, “Complemented submodules in weighted spaces of analytic functions”, Math. Nachr., 157 (1992), 263–276 | DOI | MR | Zbl

[26] V. P. Palamodov, “The projective limit functor in the category of linear topological spaces”, Math. USSR-Sb., 4:4 (1968), 529–559 | DOI | MR | Zbl

[27] V. P. Palamodov, “Homological methods in the theory of locally convex spaces”, Russian Math. Surveys, 26:1 (1971), 1–64 | DOI | MR | Zbl

[28] D. Vogt, “Topics on projective spectra of (LB)-spaces”, Advances in the theory of Fréchet spaces (Istanbul, 1988), NATO Adv. Sci. Inst. Ser. C Math. Phys. Sci., 287, Kluwer Acad. Publ., Dordrecht, 1989, 11–27 | MR | Zbl

[29] A. Martineau, “Sur la topologie des espaces de fonctions holomorphes”, Math. Ann., 163 (1966), 62–88 | DOI | MR | Zbl

[30] B. A. Taylor, “On weighted polynomial approximation of entire functions”, Pacific J. Math., 36:2 (1971), 523–539 | DOI | MR | Zbl

[31] H. H. Schaefer, Topological vector spaces, The Macmillan Co., New York; Collier–Macmillan Ltd., London, 1966, ix+294 pp. | MR | MR | Zbl | Zbl

[32] Yu. F. Korobeĭnik, “On the solutions of certain functional equations in classes of functions analytic in convex domains”, Math. USSR-Sb., 4:2 (1968), 203–211 | DOI | MR | Zbl

[33] R. E. Edwards, Functional analysis. Theory and applications, Holt, Rinehart and Winston, New York–Toronto–London, 1965, xiii+781 pp. | MR | Zbl | Zbl

[34] I. F. Krasičkov-Ternovskii, “Invariant subspaces of analytic functions. I. Spectral analysis on convex regions”, Math. USSR-Sb., 16:4 (1972), 471–500 | DOI | MR | Zbl

[35] L. Ehrenpreis, “Solution of some problems of division. IV. Invertible and elliptic operators”, Amer. J. Math., 82:3 (1960), 522–588 | DOI | MR | Zbl

[36] L. Ehrenpreis, Fourier analysis in several complex variables, Pure Appl. Math., 17, Wiley-Intersci. Publ. John Wiley Sons, New York–London–Sydney, 1970, xiii+506 pp. | MR | Zbl

[37] S. Momm, “A division problem in the space of entire functions of exponential type”, Ark. Mat., 32:1 (1994), 213–236 | DOI | MR | Zbl

[38] J. J. Kelleher, B. A. Taylor, “Closed ideals in locally convex algebras of analytic functions”, J. Reine Angew. Math., 1972:255 (1972), 190–209 | DOI | MR | Zbl

[39] C. A. Berenstein, B. A. Taylor, “A new look at interpolation theory for entire functions of one variable”, Adv. in Math., 33:2 (1979), 109–143 | DOI | MR | Zbl

[40] B. Ja. Levin, Distribution of zeros of entire functions, Transl. Math. Monogr., 5, Amer. Math. Soc., Providence, RI, 1964, viii+493 pp. | MR | MR | Zbl | Zbl

[41] L. Hörmander, An introduction to complex analysis in several variables, D. Van Nostrand Co., Inc., Princeton, NJ–Toronto, ON–London, 1966, x+208 pp. | MR | MR | Zbl | Zbl

[42] R. Meise, “Sequence space representations for (DFN)-algebras of entire functions modulo closed ideals”, J. Reine Angew. Math., 1985:363 (1985), 59–95 | DOI | MR | Zbl

[43] R. Meise, D. Vogt, Introduction to functional analysis, Transl. from the German, Oxf. Grad. Texts Math., 2, The Clarendon Press, Oxford Univ. Press, New York, 1997, x+437 pp. | MR | Zbl

[44] Yu. F. Korobeĭnik, S. N. Melikhov, “A continuous linear right inverse of the representation operator and applications to the convolution operators”, Siberian Math. J., 34:1 (1993), 59–72 | DOI | MR | Zbl

[45] G. M. Goluzin, Geometric theory of functions of a complex variable, Transl. Math. Monogr., 26, Amer. Math. Soc., Providence, RI, 1969, vi+676 pp. | MR | MR | Zbl | Zbl

[46] S. Momm, “An extremal plurisubharmonic function associated to a convex pluricomplex Green function with pole at infinity”, J. Reine Angew. Math., 1996:471 (1996), 139–163 | DOI | MR | Zbl

[47] S. Momm, “Extremal plurisubharmonic functions for convex bodies in $\mathbb C^n$”, Complex analysis, harmonic analysis and applications (Bordeaux, 1995), Pitman Res. Notes Math. Ser., 347, Longman, Harlow, 1996, 87–103 | MR | Zbl

[48] S. N. Melikhov, “Vypuklye konformnye otobrazheniya i pravye obratnye k operatoru predstavleniya ryadami eksponent”, Geometricheskaya teoriya funktsii, kraevye zadachi i ikh prilozheniya (Kazan, 2002), Tr. Matem. tsentra im. N. I. Lobachevskogo, 14, Izd-vo Kazansk. matem. o-va, Kazan, 2002, 213–227 | MR | Zbl

[49] S. N. Melikhov, S. Momm, “On the expansions of analytic functions on convex locally closed sets in exponential series”, Vladikavk. matem. zhurn., 13:1 (2011), 44–58 | MR | Zbl

[50] L. I. Ronkin, Introduction to the theory of entire functions of several variables, Transl. Math. Monogr., 44, Amer. Math. Soc., Providence, RI, 1974, vi+273 pp. | MR | MR | Zbl | Zbl