Mots-clés : convolution equation
@article{SM_2020_211_7_a5,
author = {S. N. Melikhov and L. V. Khanina},
title = {Analytic solutions of convolution equations on convex sets in the complex plane with an open obstacle on the boundary},
journal = {Sbornik. Mathematics},
pages = {1014--1040},
year = {2020},
volume = {211},
number = {7},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SM_2020_211_7_a5/}
}
TY - JOUR AU - S. N. Melikhov AU - L. V. Khanina TI - Analytic solutions of convolution equations on convex sets in the complex plane with an open obstacle on the boundary JO - Sbornik. Mathematics PY - 2020 SP - 1014 EP - 1040 VL - 211 IS - 7 UR - http://geodesic.mathdoc.fr/item/SM_2020_211_7_a5/ LA - en ID - SM_2020_211_7_a5 ER -
%0 Journal Article %A S. N. Melikhov %A L. V. Khanina %T Analytic solutions of convolution equations on convex sets in the complex plane with an open obstacle on the boundary %J Sbornik. Mathematics %D 2020 %P 1014-1040 %V 211 %N 7 %U http://geodesic.mathdoc.fr/item/SM_2020_211_7_a5/ %G en %F SM_2020_211_7_a5
S. N. Melikhov; L. V. Khanina. Analytic solutions of convolution equations on convex sets in the complex plane with an open obstacle on the boundary. Sbornik. Mathematics, Tome 211 (2020) no. 7, pp. 1014-1040. http://geodesic.mathdoc.fr/item/SM_2020_211_7_a5/
[1] V. P. Khavin, “Prostranstva analiticheskikh funktsii”, Itogi nauki. Ser. Matematika. Matem. anal. 1964, VINITI, M., 1966, 76–164 | MR
[2] Yu. F. Korobeinik, “On the countable definability of sets”, Math. Notes, 59:3 (1996), 269–278 | DOI | DOI | MR | Zbl
[3] O. V. Epifanov, “The problem concerning the epimorphicity of a convolution operator in convex domains”, Math. Notes, 16:3 (1974), 837–841 | DOI | MR | Zbl
[4] V. A. Tkačenko, “Equations of convolution type in spaces of analytic functionals”, Math. USSR-Izv., 11:2 (1977), 361–374 | DOI | MR | Zbl
[5] O. V. Epifanov, “Uravnenie svertki v kompleksnoi ploskosti”, Issledovaniya po teorii operatorov, Nauka, Ufa, 1988, 48–58
[6] I. M. Mal'tsev, “On conditions for surjectivity of a convolution operator in a complex domain. I. Necessary conditions for surjectivity”, Russian Math. (Iz. VUZ), 38:7 (1994), 47–56 | MR | Zbl
[7] I. M. Mal'tsev, “On conditions for the surjectivity of a convolution operator in a complex domain. II. Sufficient conditions and criteria for surjectivity”, Russian Math. (Iz. VUZ), 38:11 (1994), 40–49 | MR | Zbl
[8] Yu. F. Korobe\u inik, “On surjectivity of the convolution operator in spaces of analytic functions”, Siberian Math. J., 38:6 (1997), 1137–1145 | DOI | MR | Zbl
[9] S. V. Znamenskiĭ, E. A. Znamenskaya, “Surjectivity of a convolution operator with a point support in the space of functions holomorphic on an arbitrary set in $\mathbb C$”, Dokl. Math., 63:1 (2001), 85–87 | MR | Zbl
[10] B. A. Taylor, R. Meise, D. Vogt, “Characterization of the linear partial differential operators with constant coefficients that admit a continuous linear right inverse”, Ann. Inst. Fourier (Grenoble), 40:3 (1990), 619–655 | DOI | MR | Zbl
[11] K. Schwerdtfeger, Faltungsoperatoren auf Räumen holomorpher und beliebig oft differenzierbarer Funktionen, Thesis, Düsseldorf Univ., 1982
[12] B. A. Taylor, “Linear extension operators for entire functions”, Michigan Math. J., 29:2 (1982), 185–197 | DOI | MR | Zbl
[13] S. Momm, “Convex univalent functions and continuous linear right inverses”, J. Funct. Anal., 103:1 (1992), 85–103 | DOI | MR | Zbl
[14] S. Momm, “Convolution equations on the analytic functions on convex domains in the plane”, Bull. Sci. Math., 118:3 (1994), 259–270 | MR | Zbl
[15] M. Langenbruch, “Continuous linear right inverses for convolution operators in spaces of real analytic functions”, Studia Math., 110:1 (1994), 65–82 | DOI | MR | Zbl
[16] S. N. Melikhov, S. Momm, “On the linear inverse from right operator for the convolution operator on the spaces of germs of analytical functions on convex compacts in $\mathbb C$”, Russian Math. (Iz. VUZ), 41:5 (1997), 35–45 | MR | Zbl
[17] Yu. F. Korobeinik, “Right inverse for a convolution operator in space of germs of analytic functions on connected subsets of $\mathbb C$”, Sb. Math., 187:1 (1996), 53–80 | DOI | DOI | MR | Zbl
[18] S. N. Melikhov, S. Momm, “Analytic solutions of convolution equations on convex sets with an obstacle in the boundary”, Math. Scand., 86:2 (2000), 293–319 | DOI | MR | Zbl
[19] A. V. Abanin, Le Hai Khoi, “Linear continuous right inverse to convolution operator in spaces of holomorphic functions of polynomial growth”, Russian Math. (Iz. VUZ), 59:1 (2015), 1–10 | DOI | MR | Zbl
[20] U. V. Barkina, S. N. Melikhov, “Ob operatore resheniya dlya differentsialnykh uravnenii beskonechnogo poryadka na vypuklykh mnozhestvakh”, Vladikavk. matem. zhurn., 16:4 (2014), 27–40 | MR | Zbl
[21] R. Meise, B. A. Taylor, “Each non-zero convolution operator on the entire functions admits a continuous linear right inverse”, Math. Z., 197:1 (1988), 139–152 | DOI | MR | Zbl
[22] S. Momm, “Boundary behavior of extremal plurisubharmonic functions”, Acta Math., 172:1 (1994), 51–75 | DOI | MR | Zbl
[23] S. N. Melikhov, S. Momm, “Solution operators for convolution equations on the germs of analytic functions on compact convex sets in $\mathbb C^{N}$”, Studia Math., 117:1 (1995), 79–99 | DOI | MR | Zbl
[24] R. Meise, S. Momm, B. A. Taylor, “Splitting of slowly decreasing ideals in weighted algebras of entire functions”, Complex analysis II (College Park, MD, 1985–86), Lecture Notes in Math., 1276, Springer, Berlin, 1987, 229–252 | DOI | MR | Zbl
[25] M. Langenbruch, S. Momm, “Complemented submodules in weighted spaces of analytic functions”, Math. Nachr., 157 (1992), 263–276 | DOI | MR | Zbl
[26] V. P. Palamodov, “The projective limit functor in the category of linear topological spaces”, Math. USSR-Sb., 4:4 (1968), 529–559 | DOI | MR | Zbl
[27] V. P. Palamodov, “Homological methods in the theory of locally convex spaces”, Russian Math. Surveys, 26:1 (1971), 1–64 | DOI | MR | Zbl
[28] D. Vogt, “Topics on projective spectra of (LB)-spaces”, Advances in the theory of Fréchet spaces (Istanbul, 1988), NATO Adv. Sci. Inst. Ser. C Math. Phys. Sci., 287, Kluwer Acad. Publ., Dordrecht, 1989, 11–27 | MR | Zbl
[29] A. Martineau, “Sur la topologie des espaces de fonctions holomorphes”, Math. Ann., 163 (1966), 62–88 | DOI | MR | Zbl
[30] B. A. Taylor, “On weighted polynomial approximation of entire functions”, Pacific J. Math., 36:2 (1971), 523–539 | DOI | MR | Zbl
[31] H. H. Schaefer, Topological vector spaces, The Macmillan Co., New York; Collier–Macmillan Ltd., London, 1966, ix+294 pp. | MR | MR | Zbl | Zbl
[32] Yu. F. Korobeĭnik, “On the solutions of certain functional equations in classes of functions analytic in convex domains”, Math. USSR-Sb., 4:2 (1968), 203–211 | DOI | MR | Zbl
[33] R. E. Edwards, Functional analysis. Theory and applications, Holt, Rinehart and Winston, New York–Toronto–London, 1965, xiii+781 pp. | MR | Zbl | Zbl
[34] I. F. Krasičkov-Ternovskii, “Invariant subspaces of analytic functions. I. Spectral analysis on convex regions”, Math. USSR-Sb., 16:4 (1972), 471–500 | DOI | MR | Zbl
[35] L. Ehrenpreis, “Solution of some problems of division. IV. Invertible and elliptic operators”, Amer. J. Math., 82:3 (1960), 522–588 | DOI | MR | Zbl
[36] L. Ehrenpreis, Fourier analysis in several complex variables, Pure Appl. Math., 17, Wiley-Intersci. Publ. John Wiley Sons, New York–London–Sydney, 1970, xiii+506 pp. | MR | Zbl
[37] S. Momm, “A division problem in the space of entire functions of exponential type”, Ark. Mat., 32:1 (1994), 213–236 | DOI | MR | Zbl
[38] J. J. Kelleher, B. A. Taylor, “Closed ideals in locally convex algebras of analytic functions”, J. Reine Angew. Math., 1972:255 (1972), 190–209 | DOI | MR | Zbl
[39] C. A. Berenstein, B. A. Taylor, “A new look at interpolation theory for entire functions of one variable”, Adv. in Math., 33:2 (1979), 109–143 | DOI | MR | Zbl
[40] B. Ja. Levin, Distribution of zeros of entire functions, Transl. Math. Monogr., 5, Amer. Math. Soc., Providence, RI, 1964, viii+493 pp. | MR | MR | Zbl | Zbl
[41] L. Hörmander, An introduction to complex analysis in several variables, D. Van Nostrand Co., Inc., Princeton, NJ–Toronto, ON–London, 1966, x+208 pp. | MR | MR | Zbl | Zbl
[42] R. Meise, “Sequence space representations for (DFN)-algebras of entire functions modulo closed ideals”, J. Reine Angew. Math., 1985:363 (1985), 59–95 | DOI | MR | Zbl
[43] R. Meise, D. Vogt, Introduction to functional analysis, Transl. from the German, Oxf. Grad. Texts Math., 2, The Clarendon Press, Oxford Univ. Press, New York, 1997, x+437 pp. | MR | Zbl
[44] Yu. F. Korobeĭnik, S. N. Melikhov, “A continuous linear right inverse of the representation operator and applications to the convolution operators”, Siberian Math. J., 34:1 (1993), 59–72 | DOI | MR | Zbl
[45] G. M. Goluzin, Geometric theory of functions of a complex variable, Transl. Math. Monogr., 26, Amer. Math. Soc., Providence, RI, 1969, vi+676 pp. | MR | MR | Zbl | Zbl
[46] S. Momm, “An extremal plurisubharmonic function associated to a convex pluricomplex Green function with pole at infinity”, J. Reine Angew. Math., 1996:471 (1996), 139–163 | DOI | MR | Zbl
[47] S. Momm, “Extremal plurisubharmonic functions for convex bodies in $\mathbb C^n$”, Complex analysis, harmonic analysis and applications (Bordeaux, 1995), Pitman Res. Notes Math. Ser., 347, Longman, Harlow, 1996, 87–103 | MR | Zbl
[48] S. N. Melikhov, “Vypuklye konformnye otobrazheniya i pravye obratnye k operatoru predstavleniya ryadami eksponent”, Geometricheskaya teoriya funktsii, kraevye zadachi i ikh prilozheniya (Kazan, 2002), Tr. Matem. tsentra im. N. I. Lobachevskogo, 14, Izd-vo Kazansk. matem. o-va, Kazan, 2002, 213–227 | MR | Zbl
[49] S. N. Melikhov, S. Momm, “On the expansions of analytic functions on convex locally closed sets in exponential series”, Vladikavk. matem. zhurn., 13:1 (2011), 44–58 | MR | Zbl
[50] L. I. Ronkin, Introduction to the theory of entire functions of several variables, Transl. Math. Monogr., 44, Amer. Math. Soc., Providence, RI, 1974, vi+273 pp. | MR | MR | Zbl | Zbl