Analytic solutions of convolution equations on convex sets in the complex plane with an open obstacle on the boundary
    
    
  
  
  
      
      
      
        
Sbornik. Mathematics, Tome 211 (2020) no. 7, pp. 1014-1040
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Math-Net.Ru
            
              			Conditions, including criteria, are established for the existence of a continuous linear right inverse to a surjective convolution operator in the space of germs of analytic functions on a convex subset of the complex plane which has a countable neighbourhood basis consisting of convex domains. These are stated in terms of the existence of special families of subharmonic functions and the boundary behaviour of convex conformal mappings related to the sets in question. 
Bibliography: 50 titles.
			
            
            
            
          
        
      
                  
                    
                    
                    
                        
Keywords: 
space of germs of analytic functions, continuous linear right inverse.
Mots-clés : convolution equation
                    
                  
                
                
                Mots-clés : convolution equation
@article{SM_2020_211_7_a5,
     author = {S. N. Melikhov and L. V. Khanina},
     title = {Analytic solutions of convolution equations on convex sets in the complex plane with an open obstacle on the boundary},
     journal = {Sbornik. Mathematics},
     pages = {1014--1040},
     publisher = {mathdoc},
     volume = {211},
     number = {7},
     year = {2020},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2020_211_7_a5/}
}
                      
                      
                    TY - JOUR AU - S. N. Melikhov AU - L. V. Khanina TI - Analytic solutions of convolution equations on convex sets in the complex plane with an open obstacle on the boundary JO - Sbornik. Mathematics PY - 2020 SP - 1014 EP - 1040 VL - 211 IS - 7 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/SM_2020_211_7_a5/ LA - en ID - SM_2020_211_7_a5 ER -
%0 Journal Article %A S. N. Melikhov %A L. V. Khanina %T Analytic solutions of convolution equations on convex sets in the complex plane with an open obstacle on the boundary %J Sbornik. Mathematics %D 2020 %P 1014-1040 %V 211 %N 7 %I mathdoc %U http://geodesic.mathdoc.fr/item/SM_2020_211_7_a5/ %G en %F SM_2020_211_7_a5
S. N. Melikhov; L. V. Khanina. Analytic solutions of convolution equations on convex sets in the complex plane with an open obstacle on the boundary. Sbornik. Mathematics, Tome 211 (2020) no. 7, pp. 1014-1040. http://geodesic.mathdoc.fr/item/SM_2020_211_7_a5/
