Analytic solutions of convolution equations on convex sets in the complex plane with an open obstacle on the boundary
Sbornik. Mathematics, Tome 211 (2020) no. 7, pp. 1014-1040

Voir la notice de l'article provenant de la source Math-Net.Ru

Conditions, including criteria, are established for the existence of a continuous linear right inverse to a surjective convolution operator in the space of germs of analytic functions on a convex subset of the complex plane which has a countable neighbourhood basis consisting of convex domains. These are stated in terms of the existence of special families of subharmonic functions and the boundary behaviour of convex conformal mappings related to the sets in question. Bibliography: 50 titles.
Keywords: space of germs of analytic functions, continuous linear right inverse.
Mots-clés : convolution equation
@article{SM_2020_211_7_a5,
     author = {S. N. Melikhov and L. V. Khanina},
     title = {Analytic solutions of convolution equations on convex sets in the complex plane with an open obstacle on the boundary},
     journal = {Sbornik. Mathematics},
     pages = {1014--1040},
     publisher = {mathdoc},
     volume = {211},
     number = {7},
     year = {2020},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2020_211_7_a5/}
}
TY  - JOUR
AU  - S. N. Melikhov
AU  - L. V. Khanina
TI  - Analytic solutions of convolution equations on convex sets in the complex plane with an open obstacle on the boundary
JO  - Sbornik. Mathematics
PY  - 2020
SP  - 1014
EP  - 1040
VL  - 211
IS  - 7
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SM_2020_211_7_a5/
LA  - en
ID  - SM_2020_211_7_a5
ER  - 
%0 Journal Article
%A S. N. Melikhov
%A L. V. Khanina
%T Analytic solutions of convolution equations on convex sets in the complex plane with an open obstacle on the boundary
%J Sbornik. Mathematics
%D 2020
%P 1014-1040
%V 211
%N 7
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SM_2020_211_7_a5/
%G en
%F SM_2020_211_7_a5
S. N. Melikhov; L. V. Khanina. Analytic solutions of convolution equations on convex sets in the complex plane with an open obstacle on the boundary. Sbornik. Mathematics, Tome 211 (2020) no. 7, pp. 1014-1040. http://geodesic.mathdoc.fr/item/SM_2020_211_7_a5/