An elliptic billiard in a potential force field: classification of motions, topological analysis
Sbornik. Mathematics, Tome 211 (2020) no. 7, pp. 987-1013 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Given an ellipse ${\frac{x^2}{a}+\frac{y^2}{b}=1}$, $a>b>0$, we consider an absolutely elastic billiard in it with potential $\frac{k}{2}(x^2+y^2)+\frac{\alpha}{2x^2}+\frac{\beta}{2y^2}$, $a\geqslant0$, $\beta\geqslant0$. This dynamical system is integrable and has two degrees of freedom. We obtain the iso-energy invariants of rough and fine Liouville equivalence, and conduct a comparative analysis of other systems known in rigid body mechanics. To obtain the results we apply the method of separation of variables and construct a new method, which is equivalent to the bifurcation diagram but does not require it to be constructed. Bibliography: 17 titles.
Keywords: integrable Hamiltonian system, potential
Mots-clés : billiard in an ellipse, Liouville foliation, bifurcations.
@article{SM_2020_211_7_a4,
     author = {I. F. Kobtsev},
     title = {An elliptic billiard in a~potential force field: classification of motions, topological analysis},
     journal = {Sbornik. Mathematics},
     pages = {987--1013},
     year = {2020},
     volume = {211},
     number = {7},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2020_211_7_a4/}
}
TY  - JOUR
AU  - I. F. Kobtsev
TI  - An elliptic billiard in a potential force field: classification of motions, topological analysis
JO  - Sbornik. Mathematics
PY  - 2020
SP  - 987
EP  - 1013
VL  - 211
IS  - 7
UR  - http://geodesic.mathdoc.fr/item/SM_2020_211_7_a4/
LA  - en
ID  - SM_2020_211_7_a4
ER  - 
%0 Journal Article
%A I. F. Kobtsev
%T An elliptic billiard in a potential force field: classification of motions, topological analysis
%J Sbornik. Mathematics
%D 2020
%P 987-1013
%V 211
%N 7
%U http://geodesic.mathdoc.fr/item/SM_2020_211_7_a4/
%G en
%F SM_2020_211_7_a4
I. F. Kobtsev. An elliptic billiard in a potential force field: classification of motions, topological analysis. Sbornik. Mathematics, Tome 211 (2020) no. 7, pp. 987-1013. http://geodesic.mathdoc.fr/item/SM_2020_211_7_a4/

[1] V. V. Kozlov, D. V. Treshchev, Billiards. A genetic introduction to the dynamics of systems with impacts, Transl. Math. Monogr., 89, Amer. Math. Soc., Providence, RI, 1991, viii+171 pp. | DOI | MR | MR | Zbl | Zbl

[2] A. T. Fomenko, “Morse theory of integrable Hamiltonian systems”, Soviet Math. Dokl., 33:2 (1986), 502–506 | MR | Zbl

[3] A. T. Fomenko, H. Zieschang, “On the topology of the three-dimensional manifolds arising in Hamiltonian mechanics”, Soviet Math. Dokl., 35:2 (1987), 529–534 | MR | Zbl

[4] A. V. Bolsinov, A. T. Fomenko, Integrable Hamiltonian systems. Geometry, topology, classification, Chapman Hall/CRC, Boca Raton, FL, 2004, xvi+730 pp. | DOI | MR | MR | Zbl | Zbl

[5] V. V. Vedyushkina, A. T. Fomenko, I. S. Kharcheva, “Modeling nondegenerate bifurcations of closures of solutions for integrable systems with two degrees of freedom by integrable topological billiards”, Dokl. Math., 97:2 (2018), 174–176 | DOI | DOI | MR | Zbl

[6] A. T. Fomenko, V. V. Vedyushkina, “Billiards and integrability in geometry and physics. New scope and new potential”, Moscow Univ. Math. Bull., 74:3 (2019), 98–107 | DOI | MR | Zbl

[7] V. V. Vedyushkina, A. T. Fomenko, “Integrable topological billiards and equivalent dynamical systems”, Izv. Math., 81:4 (2017), 688–733 | DOI | DOI | MR | Zbl

[8] V. V. Fokicheva, A. T. Fomenko, “Billiard systems as the models for the rigid body dynamics”, Advances in dynamical systems and control, Stud. Syst. Decis. Control, 69, Springer, Cham, 2016, 13–33 | DOI | MR | Zbl

[9] V. V. Fokicheva, A. T. Fomenko, “Integrable billiards model important integrable cases of rigid body dynamics”, Dokl. Math., 92:3 (2015), 682–684 | DOI | DOI | MR | Zbl

[10] A. T. Fomenko, A. Yu. Konyaev, “New approach to symmetries and singularities in integrable Hamiltonian systems”, Topology Appl., 159:7 (2012), 1964–1975 | DOI | MR | Zbl

[11] V. V. Kozlov, “Some integrable extensions of Jacobi's problem of geodesics on an ellipsoid”, J. Appl. Math. Mech., 59:1 (1995), 1–7 | DOI | MR | Zbl

[12] M. P. Kharlamov, “Topologicheskii analiz i bulevy funktsii: I. Metody i prilozheniya k klassicheskim sistemam”, Nelineinaya dinam., 6:4 (2010), 769–805

[13] M. Radnović, “Topology of the elliptical billiard with the Hooke's potential”, Theoret. Appl. Mech., 42:1 (2015), 1–9 | DOI | Zbl

[14] S. S. Nikolaenko, “The number of connected components in the preimage of a regular value of the momentum mapping for the geodesic flow on ellipsoid”, Moscow Univ. Math. Bull., 68:5 (2013), 241–245 | DOI | MR | Zbl

[15] S. S. Nikolaenko, “Topological classification of the Goryachev integrable case in rigid body dynamics”, Sb. Math., 207:1 (2016), 113–139 | DOI | DOI | MR | Zbl

[16] V. V. Fokicheva, “A topological classification of billiards in locally planar domains bounded by arcs of confocal quadrics”, Sb. Math., 206:10 (2015), 1463–1507 | DOI | DOI | MR | Zbl

[17] A. M. Perelomov, Integrable systems of classical mechanics and Lie algebras, v. I, Birkhäuser Verlag, Basel, 1990, x+307 pp. | DOI | MR | Zbl | Zbl