An elliptic billiard in a~potential force field: classification of motions, topological analysis
Sbornik. Mathematics, Tome 211 (2020) no. 7, pp. 987-1013

Voir la notice de l'article provenant de la source Math-Net.Ru

Given an ellipse ${\frac{x^2}{a}+\frac{y^2}{b}=1}$, $a>b>0$, we consider an absolutely elastic billiard in it with potential $\frac{k}{2}(x^2+y^2)+\frac{\alpha}{2x^2}+\frac{\beta}{2y^2}$, $a\geqslant0$, $\beta\geqslant0$. This dynamical system is integrable and has two degrees of freedom. We obtain the iso-energy invariants of rough and fine Liouville equivalence, and conduct a comparative analysis of other systems known in rigid body mechanics. To obtain the results we apply the method of separation of variables and construct a new method, which is equivalent to the bifurcation diagram but does not require it to be constructed. Bibliography: 17 titles.
Keywords: integrable Hamiltonian system, potential
Mots-clés : billiard in an ellipse, Liouville foliation, bifurcations.
@article{SM_2020_211_7_a4,
     author = {I. F. Kobtsev},
     title = {An elliptic billiard in a~potential force field: classification of motions, topological analysis},
     journal = {Sbornik. Mathematics},
     pages = {987--1013},
     publisher = {mathdoc},
     volume = {211},
     number = {7},
     year = {2020},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2020_211_7_a4/}
}
TY  - JOUR
AU  - I. F. Kobtsev
TI  - An elliptic billiard in a~potential force field: classification of motions, topological analysis
JO  - Sbornik. Mathematics
PY  - 2020
SP  - 987
EP  - 1013
VL  - 211
IS  - 7
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SM_2020_211_7_a4/
LA  - en
ID  - SM_2020_211_7_a4
ER  - 
%0 Journal Article
%A I. F. Kobtsev
%T An elliptic billiard in a~potential force field: classification of motions, topological analysis
%J Sbornik. Mathematics
%D 2020
%P 987-1013
%V 211
%N 7
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SM_2020_211_7_a4/
%G en
%F SM_2020_211_7_a4
I. F. Kobtsev. An elliptic billiard in a~potential force field: classification of motions, topological analysis. Sbornik. Mathematics, Tome 211 (2020) no. 7, pp. 987-1013. http://geodesic.mathdoc.fr/item/SM_2020_211_7_a4/