An elliptic billiard in a~potential force field: classification of motions, topological analysis
Sbornik. Mathematics, Tome 211 (2020) no. 7, pp. 987-1013
Voir la notice de l'article provenant de la source Math-Net.Ru
Given an ellipse ${\frac{x^2}{a}+\frac{y^2}{b}=1}$, $a>b>0$, we consider an absolutely elastic billiard in it with potential $\frac{k}{2}(x^2+y^2)+\frac{\alpha}{2x^2}+\frac{\beta}{2y^2}$, $a\geqslant0$, $\beta\geqslant0$. This dynamical system is integrable and has two degrees of freedom. We obtain the iso-energy invariants of rough and fine Liouville equivalence, and conduct a comparative analysis of other systems known in rigid body mechanics. To obtain the results we apply the method of separation of variables and construct a new method, which is equivalent to the bifurcation diagram but does not require it to be constructed.
Bibliography: 17 titles.
Keywords:
integrable Hamiltonian system, potential
Mots-clés : billiard in an ellipse, Liouville foliation, bifurcations.
Mots-clés : billiard in an ellipse, Liouville foliation, bifurcations.
@article{SM_2020_211_7_a4,
author = {I. F. Kobtsev},
title = {An elliptic billiard in a~potential force field: classification of motions, topological analysis},
journal = {Sbornik. Mathematics},
pages = {987--1013},
publisher = {mathdoc},
volume = {211},
number = {7},
year = {2020},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SM_2020_211_7_a4/}
}
TY - JOUR AU - I. F. Kobtsev TI - An elliptic billiard in a~potential force field: classification of motions, topological analysis JO - Sbornik. Mathematics PY - 2020 SP - 987 EP - 1013 VL - 211 IS - 7 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/SM_2020_211_7_a4/ LA - en ID - SM_2020_211_7_a4 ER -
I. F. Kobtsev. An elliptic billiard in a~potential force field: classification of motions, topological analysis. Sbornik. Mathematics, Tome 211 (2020) no. 7, pp. 987-1013. http://geodesic.mathdoc.fr/item/SM_2020_211_7_a4/