A new series of moduli components of rank-2 semistable sheaves on $\mathbb{P}^{3}$ with singularities of mixed dimension
Sbornik. Mathematics, Tome 211 (2020) no. 7, pp. 967-986 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We construct a new infinite series of irreducible components of the Gieseker-Maruyama moduli scheme $\mathscr{M}(k)$, $k \geqslant 3$, of semistable rank-2 sheaves on $\mathbb{P}^3$ with Chern classes $c_1=0$, $c_2=k$ and $c_3=0$, whose general points are sheaves with singularities of mixed dimension. These sheaves are constructed by elementary transformations of stable and properly $\mu$-semistable reflexive sheaves along disjoint unions of collections of points and smooth irreducible curves which are rational or complete intersection curves in $\mathbb{P}^{3}$. As a special member of this series, we obtain a new component of $\mathscr{M}(3)$. Bibliography: 12 titles.
Keywords: rank-2 semistable sheaves, reflexive sheaves
Mots-clés : moduli spaces.
@article{SM_2020_211_7_a3,
     author = {A. N. Ivanov},
     title = {A~new series of moduli components of rank-2 semistable sheaves on~$\mathbb{P}^{3}$ with singularities of mixed dimension},
     journal = {Sbornik. Mathematics},
     pages = {967--986},
     year = {2020},
     volume = {211},
     number = {7},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2020_211_7_a3/}
}
TY  - JOUR
AU  - A. N. Ivanov
TI  - A new series of moduli components of rank-2 semistable sheaves on $\mathbb{P}^{3}$ with singularities of mixed dimension
JO  - Sbornik. Mathematics
PY  - 2020
SP  - 967
EP  - 986
VL  - 211
IS  - 7
UR  - http://geodesic.mathdoc.fr/item/SM_2020_211_7_a3/
LA  - en
ID  - SM_2020_211_7_a3
ER  - 
%0 Journal Article
%A A. N. Ivanov
%T A new series of moduli components of rank-2 semistable sheaves on $\mathbb{P}^{3}$ with singularities of mixed dimension
%J Sbornik. Mathematics
%D 2020
%P 967-986
%V 211
%N 7
%U http://geodesic.mathdoc.fr/item/SM_2020_211_7_a3/
%G en
%F SM_2020_211_7_a3
A. N. Ivanov. A new series of moduli components of rank-2 semistable sheaves on $\mathbb{P}^{3}$ with singularities of mixed dimension. Sbornik. Mathematics, Tome 211 (2020) no. 7, pp. 967-986. http://geodesic.mathdoc.fr/item/SM_2020_211_7_a3/

[1] C. Almeida, M. Jardim, A. S. Tikhomirov, Irreducible components of the moduli space of rank 2 sheaves of odd determinant on $\mathbb{P}^{3}$, 2019, arXiv: 1903.00292v1

[2] Mei-Chu Chang, “Stable rank 2 reflexive sheaves on $\mathbb{P}^3$ with small $c_2$ and applications”, Trans. Amer. Math. Soc., 284:1 (1984), 57–89 | DOI | MR | Zbl

[3] R. Hartshorne, “Stable reflexive sheaves”, Math. Ann., 254:2 (1980), 121–176 | DOI | MR | Zbl

[4] R. Hartshorne, Algebraic geometry, Grad. Texts in Math., 52, Springer-Verlag, New York–Heidelberg, 1977, xvi+496 pp. | DOI | MR | MR | Zbl | Zbl

[5] R. Hartshorne, A. Hirschowitz, “Smoothing algebraic space curves”, Algebraic geometry (Sitges (Barcelona), 1983), Lecture Notes in Math., 1124, Springer, Berlin, 1985, 98–131 | DOI | MR | Zbl

[6] D. Huybrechts, M. Lehn, The geometry of moduli spaces of sheaves, Cambridge Math. Lib., 2nd ed., Cambridge, Cambridge Univ. Press, 2010, xviii+325 pp. | DOI | MR | Zbl

[7] A. N. Ivanov, A. S. Tikhomirov, “Semistable rank 2 sheaves with singularities of mixed dimension on $\mathbb{P}^3$”, J. Geom. Phys., 129 (2018), 90–98 | DOI | MR | Zbl

[8] M. Jardim, D. Markushevich, A. S. Tikhomirov, “New divisors in the boundary of the instanton moduli space”, Mosc. Math. J., 18:1 (2018), 117–148 | DOI | MR | Zbl

[9] M. Jardim, D. Markushevich, A. S. Tikhomirov, “Two infinite series of moduli spaces of rank 2 sheaves on $\mathbb{P}^3$”, Ann. Mat. Pura Appl. (4), 196:4 (2017), 1573–1608 | DOI | MR | Zbl

[10] H. Lange, “Universal families of extensions”, J. Algebra, 83:1 (1983), 101–112 | DOI | MR | Zbl

[11] M. Maruyama, “Moduli of stable sheaves. I”, J. Math. Kyoto Univ., 17:1 (1977), 91–126 | DOI | MR | Zbl

[12] S. A. Strømme, “Ample divisors on fine moduli spaces on the projective plane”, Math. Z., 187:3 (1984), 405–423 | DOI | MR | Zbl