On the derived category of $\mathrm{IGr}(3,8)$
Sbornik. Mathematics, Tome 211 (2020) no. 7, pp. 922-955 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We construct a full exceptional collection of vector bundles in the bounded derived category of coherent sheaves on the Grassmannian $\mathrm{IGr}(3,8)$ of isotropic 3-dimensional subspaces in a symplectic vector space of dimension 8. Bibliography: 16 titles.
Keywords: derived category of coherent sheaves
Mots-clés : semiorthogonal decompositions.
@article{SM_2020_211_7_a1,
     author = {L. A. Guseva},
     title = {On the derived category of $\mathrm{IGr}(3,8)$},
     journal = {Sbornik. Mathematics},
     pages = {922--955},
     year = {2020},
     volume = {211},
     number = {7},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2020_211_7_a1/}
}
TY  - JOUR
AU  - L. A. Guseva
TI  - On the derived category of $\mathrm{IGr}(3,8)$
JO  - Sbornik. Mathematics
PY  - 2020
SP  - 922
EP  - 955
VL  - 211
IS  - 7
UR  - http://geodesic.mathdoc.fr/item/SM_2020_211_7_a1/
LA  - en
ID  - SM_2020_211_7_a1
ER  - 
%0 Journal Article
%A L. A. Guseva
%T On the derived category of $\mathrm{IGr}(3,8)$
%J Sbornik. Mathematics
%D 2020
%P 922-955
%V 211
%N 7
%U http://geodesic.mathdoc.fr/item/SM_2020_211_7_a1/
%G en
%F SM_2020_211_7_a1
L. A. Guseva. On the derived category of $\mathrm{IGr}(3,8)$. Sbornik. Mathematics, Tome 211 (2020) no. 7, pp. 922-955. http://geodesic.mathdoc.fr/item/SM_2020_211_7_a1/

[1] A. Beilinson, “Coherent sheaves on $\mathbf P^n$ and problems of linear algebra”, Funct. Anal. Appl., 12:3 (1978), 214–216 | DOI | MR | Zbl

[2] A. I. Bondal, “Representation of associative algebras and coherent sheaves”, Math. USSR-Izv., 34:1 (1990), 23–42 | DOI | MR | Zbl

[3] M. Demazure, “A very simple proof of Bott's theorem”, Invent. Math., 33:3 (1976), 271–272 | DOI | MR | Zbl

[4] D. Faenzi, L. Manivel, “On the derived category of the Cayley plane II”, Proc. Amer. Math. Soc., 143:3 (2015), 1057–1074 | DOI | MR | Zbl

[5] A. V. Fonarev, “Minimal Lefschetz decompositions of the derived categories for Grassmannians”, Izv. Math., 77:5 (2013), 1044–1065 | DOI | DOI | MR | Zbl

[6] M. M. Kapranov, “On the derived categories of coherent sheaves on some homogeneous spaces”, Invent. Math., 92:3 (1988), 479–508 | DOI | MR | Zbl

[7] A. G. Kuznetsov, “Hyperplane sections and derived categories”, Izv. Math., 70:3 (2006), 447–547 | DOI | DOI | MR | Zbl

[8] A. Kuznetsov, “Homological projective duality”, Publ. Math. Inst. Hautes Études Sci., 105 (2007), 157–220 | DOI | MR | Zbl

[9] A. Kuznetsov, “Exceptional collections for Grassmannians of isotropic lines”, Proc. Lond. Math. Soc. (3), 97:1 (2008), 155–182 | DOI | MR | Zbl

[10] A. Kuznetsov, “Calabi–Yau and fractional Calabi–Yau categories”, J. Reine Angew. Math., 2019:753 (2019), 239–267 ; arXiv: 1509.07657 | DOI | MR | Zbl

[11] A. Kuznetsov, A. Polishchuk, “Exceptional collections on isotropic Grassmannians”, J. Eur. Math. Soc. (JEMS), 18:3 (2016), 507–574 | DOI | MR | Zbl

[12] A. Kuznetsov, M. Smirnov, “On residual categories for Grassmannians”, Proc. Lond. Math. Soc. (3), 120:5 (2020), 617–641 ; arXiv: 1802.08097 | DOI | MR | Zbl

[13] D. O. Orlov, “Projective bundles, monoidal transformations, and derived categories of coherent sheaves”, Russian Acad. Sci. Izv. Math., 41:1 (1993), 133–141 | DOI | MR | Zbl

[14] A. Polishchuk, A. Samokhin, “Full exceptional collections on the Lagrangian Grassmannians $LG(4,8)$ and $LG(5,10)$”, J. Geom. Phys., 61:10 (2011), 1996–2014 | DOI | MR | Zbl

[15] A. V. Samokhin, “The derived category of coherent sheaves on $LG_3^{\mathbf C}$”, Russian Math. Surveys, 56:3 (2001), 592–594 | DOI | DOI | MR | Zbl

[16] J. Weyman, Cohomology of vector bundles and syzygies, Cambridge Tracts in Math., 149, Cambridge Univ. Press, Cambridge, 2003, xiv+371 pp. | DOI | MR | Zbl