On the derived category of $\mathrm{IGr}(3,8)$
Sbornik. Mathematics, Tome 211 (2020) no. 7, pp. 922-955

Voir la notice de l'article provenant de la source Math-Net.Ru

We construct a full exceptional collection of vector bundles in the bounded derived category of coherent sheaves on the Grassmannian $\mathrm{IGr}(3,8)$ of isotropic 3-dimensional subspaces in a symplectic vector space of dimension 8. Bibliography: 16 titles.
Keywords: derived category of coherent sheaves
Mots-clés : semiorthogonal decompositions.
@article{SM_2020_211_7_a1,
     author = {L. A. Guseva},
     title = {On the derived category of $\mathrm{IGr}(3,8)$},
     journal = {Sbornik. Mathematics},
     pages = {922--955},
     publisher = {mathdoc},
     volume = {211},
     number = {7},
     year = {2020},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2020_211_7_a1/}
}
TY  - JOUR
AU  - L. A. Guseva
TI  - On the derived category of $\mathrm{IGr}(3,8)$
JO  - Sbornik. Mathematics
PY  - 2020
SP  - 922
EP  - 955
VL  - 211
IS  - 7
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SM_2020_211_7_a1/
LA  - en
ID  - SM_2020_211_7_a1
ER  - 
%0 Journal Article
%A L. A. Guseva
%T On the derived category of $\mathrm{IGr}(3,8)$
%J Sbornik. Mathematics
%D 2020
%P 922-955
%V 211
%N 7
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SM_2020_211_7_a1/
%G en
%F SM_2020_211_7_a1
L. A. Guseva. On the derived category of $\mathrm{IGr}(3,8)$. Sbornik. Mathematics, Tome 211 (2020) no. 7, pp. 922-955. http://geodesic.mathdoc.fr/item/SM_2020_211_7_a1/