@article{SM_2020_211_6_a2,
author = {A. A. Garazha},
title = {A~canonical basis of a~pair of compatible {Poisson} brackets on a~matrix algebra},
journal = {Sbornik. Mathematics},
pages = {838--849},
year = {2020},
volume = {211},
number = {6},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SM_2020_211_6_a2/}
}
A. A. Garazha. A canonical basis of a pair of compatible Poisson brackets on a matrix algebra. Sbornik. Mathematics, Tome 211 (2020) no. 6, pp. 838-849. http://geodesic.mathdoc.fr/item/SM_2020_211_6_a2/
[1] F. R. Gantmacher, The theory of matrices, v. 1, 2, Chelsea Publishing Co., New York, 1959, x+374 pp., ix+276 pp. | MR | MR | Zbl | Zbl
[2] I. K. Kozlov, “An elementary proof of the Jordan–Kronecker theorem”, Math. Notes, 94:6 (2013), 885–896 | DOI | DOI | MR | Zbl
[3] A. V. Bolsinov, Zhang P., “Jordan–Kronecker invariants of finite-dimensional Lie algebras”, Transform. Groups, 21:1 (2016), 51–86 | DOI | MR | Zbl
[4] Algebra i geometriya, Seminar kafedry vysshei algebry MGU im. Lomonosova (elektronnyi resurs) http://halgebra.math.msu.su/alg-geom/
[5] A. S. Miščenko, A. T. Fomenko, “Euler equations on finite-dimensional Lie groups”, Math. USSR-Izv., 12:2 (1978), 371–389 | DOI | MR | Zbl
[6] V. Futorny, A. Molev, “Quantization of the shift of argument subalgebras in type A”, Adv. Math., 285 (2015), 1358–1375 | DOI | MR | Zbl
[7] A. Molev, O. Yakimova, “Quantisation and nilpotent limits of Mishchenko–Fomenko subalgebras”, Represent. Theory, 23 (2019), 350–378 | DOI | MR | Zbl
[8] B. Kostant, “Lie group representations on polynomial rings”, Amer. J. Math., 85:3 (1963), 327–404 | DOI | MR | Zbl
[9] H. Kraft, “Parametrisierung von Konjugationklassen in $\mathfrak{sl}_n$”, Math. Ann., 234:3 (1978), 209–220 | DOI | MR | Zbl