Local infimum and a family of maximum principles in optimal control
Sbornik. Mathematics, Tome 211 (2020) no. 6, pp. 750-785 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The notion of a local infimum for the optimal control problem, which generalizes the notion of an optimal trajectory, is introduced. For a local infimum the existence theorem is proved and necessary conditions in the form of a family of ‘maximum principles’ are derived. The meaningfulness of the necessary conditions, which generalize and strengthen Pontryagin's maximum principle, is illustrated by examples. Bibliography: 9 titles.
Keywords: optimal trajectory, maximum principle, sliding regime.
Mots-clés : local infimum
@article{SM_2020_211_6_a0,
     author = {E. R. Avakov and G. G. Magaril-Il'yaev},
     title = {Local infimum and a~family of maximum principles in optimal control},
     journal = {Sbornik. Mathematics},
     pages = {750--785},
     year = {2020},
     volume = {211},
     number = {6},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2020_211_6_a0/}
}
TY  - JOUR
AU  - E. R. Avakov
AU  - G. G. Magaril-Il'yaev
TI  - Local infimum and a family of maximum principles in optimal control
JO  - Sbornik. Mathematics
PY  - 2020
SP  - 750
EP  - 785
VL  - 211
IS  - 6
UR  - http://geodesic.mathdoc.fr/item/SM_2020_211_6_a0/
LA  - en
ID  - SM_2020_211_6_a0
ER  - 
%0 Journal Article
%A E. R. Avakov
%A G. G. Magaril-Il'yaev
%T Local infimum and a family of maximum principles in optimal control
%J Sbornik. Mathematics
%D 2020
%P 750-785
%V 211
%N 6
%U http://geodesic.mathdoc.fr/item/SM_2020_211_6_a0/
%G en
%F SM_2020_211_6_a0
E. R. Avakov; G. G. Magaril-Il'yaev. Local infimum and a family of maximum principles in optimal control. Sbornik. Mathematics, Tome 211 (2020) no. 6, pp. 750-785. http://geodesic.mathdoc.fr/item/SM_2020_211_6_a0/

[1] L. S. Pontryagin, V. G. Boltyanskii, R. V. Gamkrelidze, E. F. Mishchenko, The mathematical theory of optimal processes, A Pergamon Press Book. The Macmillan Co., New York, 1964, vii+338 pp. | MR | MR | Zbl | Zbl

[2] R. V. Gamkrelidze, Principles of optimal control theory, Math. Concepts Methods Sci. Eng., 7, Rev. ed., Plenum Press, New York–London, 1978, xii+175 pp. | MR | MR | Zbl

[3] A. F. Filippov, “O nekotorykh voprosakh teorii optimalnogo regulirovaniya”, Vestn. Mosk. un-ta. Ser. 2. Matem. Mekh. Astr. Fiz. Khim., 1959, no. 2, 25–32 | MR | Zbl

[4] A. D. Ioffe, V. M. Tihomirov, Theory of extremal problems, Stud. Math. Appl., 6, North-Holland Publishing Co., Amsterdam–New York, 1979, xii+460 pp. | MR | MR | Zbl | Zbl

[5] I. Ekeland, R. Temam, Convex analysis and variational problems, Stud. Math. Appl., 1, North-Holland Publishing Co., Amsterdam–Oxford; American Elsevier Publishing Co., Inc., New York, 1976, ix+402 pp. | MR | MR | Zbl | Zbl

[6] E. R. Avakov, G. G. Magaril-Il'yaev, “An implicit-function theorem for inclusions”, Math. Notes, 91:6 (2012), 764–769 | DOI | DOI | MR | Zbl

[7] V. M. Alekseev, V. M. Tikhomirov, S. V. Fomin, Optimal control, Contemp. Soviet Math., Consultants Bureau, New York, 1987, xiv+309 pp. | DOI | MR | MR | Zbl | Zbl

[8] E. R. Avakov, G. G. Magaril-Il'yaev, V. M. Tikhomirov, “Lagrange's principle in extremum problems with constraints”, Russian Math. Surveys, 68:3 (2013), 401–433 | DOI | DOI | MR | Zbl

[9] V. A. Zorich, Mathematical analysis, v. II, Universitext, Springer-Verlag, Berlin, 2004, xvi+681 pp. | MR | MR | Zbl | Zbl