@article{SM_2020_211_5_a4,
author = {K. M. Eminyan},
title = {Waring's problem in natural numbers of special form},
journal = {Sbornik. Mathematics},
pages = {733--749},
year = {2020},
volume = {211},
number = {5},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SM_2020_211_5_a4/}
}
K. M. Eminyan. Waring's problem in natural numbers of special form. Sbornik. Mathematics, Tome 211 (2020) no. 5, pp. 733-749. http://geodesic.mathdoc.fr/item/SM_2020_211_5_a4/
[1] A. O. Gelfond, “Sur les nombres qui ont des propriétés additives et multiplicatives données”, Acta Arith., 13 (1968), 259–265 | DOI | MR | Zbl
[2] K. M. Èminyan, “On the Dirichlet divisor problem in some sequences of natural numbers”, Math. USSR-Izv., 38:3 (1992), 669–675 | DOI | MR | Zbl
[3] R. C. Vaughan, The Hardy–Littlewood method, Cambridge Tracts in Math., 80, Cambridge Univ. Press, Cambridge–New York, 1981, xi+172 pp. | MR | MR | Zbl | Zbl
[4] D. Hilbert, “Beweis für die Darstellbarkeit der ganzen Zahlen durch eine feste Anzahl $n^\mathrm{ter}$ Potenzen (Waringsches Problem)”, Math. Ann., 67:3 (1909), 281–300 | DOI | MR | Zbl
[5] I. M. Vinogradov, The method of trigonometrical sums in the theory of numbers, Interscience Publishers Inc., London–New York, 1954, x+180 pp. | MR | MR | Zbl | Zbl
[6] A. A. Karatsuba, Basic analytic number theory, Springer-Verlag, Berlin, 1993, xiv+222 pp. | DOI | MR | MR | Zbl
[7] J. M. Thuswaldner, R. F. Tichy, “Waring's problem with digital restrictions”, Israel J. Math., 149 (2005), 317–344 | DOI | MR | Zbl
[8] O. Pfeiffer, J. M. Thuswaldner, “Waring's problem restricted by a system of sum of digits congruences”, Quaest. Math., 30:4 (2007), 513–523 | DOI | MR | Zbl
[9] A. A. Karatsuba, S. M. Voronin, The Riemann zeta-function, De Gruyter Exp. Math., 5, Walter de Gruyter Co., Berlin, 1992, xii+396 pp. | DOI | MR | MR | Zbl | Zbl