Waring's problem in natural numbers of special form
Sbornik. Mathematics, Tome 211 (2020) no. 5, pp. 733-749
Voir la notice de l'article provenant de la source Math-Net.Ru
Let $\mathbb N_0$ be the set of positive integers whose binary decompositions contain an even number of ones. We give a bound for the trigonometric sum of special form over numbers in $\mathbb N_0$; using this bound, we derive an asymptotic formula for the number of solutions to Waring's equation in positive integers in $\mathbb N_0$, and also a bound for the number of terms in the last equation, which is sufficient for the equation to be solvable in integers in $\mathbb N_0$.
Bibliography: 9 titles.
Keywords:
Waring's problem, circle method, trigonometric sums.
@article{SM_2020_211_5_a4,
author = {K. M. Eminyan},
title = {Waring's problem in natural numbers of special form},
journal = {Sbornik. Mathematics},
pages = {733--749},
publisher = {mathdoc},
volume = {211},
number = {5},
year = {2020},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SM_2020_211_5_a4/}
}
K. M. Eminyan. Waring's problem in natural numbers of special form. Sbornik. Mathematics, Tome 211 (2020) no. 5, pp. 733-749. http://geodesic.mathdoc.fr/item/SM_2020_211_5_a4/