Waring's problem in natural numbers of special form
Sbornik. Mathematics, Tome 211 (2020) no. 5, pp. 733-749 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Let $\mathbb N_0$ be the set of positive integers whose binary decompositions contain an even number of ones. We give a bound for the trigonometric sum of special form over numbers in $\mathbb N_0$; using this bound, we derive an asymptotic formula for the number of solutions to Waring's equation in positive integers in $\mathbb N_0$, and also a bound for the number of terms in the last equation, which is sufficient for the equation to be solvable in integers in $\mathbb N_0$. Bibliography: 9 titles.
Keywords: Waring's problem, circle method, trigonometric sums.
@article{SM_2020_211_5_a4,
     author = {K. M. Eminyan},
     title = {Waring's problem in natural numbers of special form},
     journal = {Sbornik. Mathematics},
     pages = {733--749},
     year = {2020},
     volume = {211},
     number = {5},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2020_211_5_a4/}
}
TY  - JOUR
AU  - K. M. Eminyan
TI  - Waring's problem in natural numbers of special form
JO  - Sbornik. Mathematics
PY  - 2020
SP  - 733
EP  - 749
VL  - 211
IS  - 5
UR  - http://geodesic.mathdoc.fr/item/SM_2020_211_5_a4/
LA  - en
ID  - SM_2020_211_5_a4
ER  - 
%0 Journal Article
%A K. M. Eminyan
%T Waring's problem in natural numbers of special form
%J Sbornik. Mathematics
%D 2020
%P 733-749
%V 211
%N 5
%U http://geodesic.mathdoc.fr/item/SM_2020_211_5_a4/
%G en
%F SM_2020_211_5_a4
K. M. Eminyan. Waring's problem in natural numbers of special form. Sbornik. Mathematics, Tome 211 (2020) no. 5, pp. 733-749. http://geodesic.mathdoc.fr/item/SM_2020_211_5_a4/

[1] A. O. Gelfond, “Sur les nombres qui ont des propriétés additives et multiplicatives données”, Acta Arith., 13 (1968), 259–265 | DOI | MR | Zbl

[2] K. M. Èminyan, “On the Dirichlet divisor problem in some sequences of natural numbers”, Math. USSR-Izv., 38:3 (1992), 669–675 | DOI | MR | Zbl

[3] R. C. Vaughan, The Hardy–Littlewood method, Cambridge Tracts in Math., 80, Cambridge Univ. Press, Cambridge–New York, 1981, xi+172 pp. | MR | MR | Zbl | Zbl

[4] D. Hilbert, “Beweis für die Darstellbarkeit der ganzen Zahlen durch eine feste Anzahl $n^\mathrm{ter}$ Potenzen (Waringsches Problem)”, Math. Ann., 67:3 (1909), 281–300 | DOI | MR | Zbl

[5] I. M. Vinogradov, The method of trigonometrical sums in the theory of numbers, Interscience Publishers Inc., London–New York, 1954, x+180 pp. | MR | MR | Zbl | Zbl

[6] A. A. Karatsuba, Basic analytic number theory, Springer-Verlag, Berlin, 1993, xiv+222 pp. | DOI | MR | MR | Zbl

[7] J. M. Thuswaldner, R. F. Tichy, “Waring's problem with digital restrictions”, Israel J. Math., 149 (2005), 317–344 | DOI | MR | Zbl

[8] O. Pfeiffer, J. M. Thuswaldner, “Waring's problem restricted by a system of sum of digits congruences”, Quaest. Math., 30:4 (2007), 513–523 | DOI | MR | Zbl

[9] A. A. Karatsuba, S. M. Voronin, The Riemann zeta-function, De Gruyter Exp. Math., 5, Walter de Gruyter Co., Berlin, 1992, xii+396 pp. | DOI | MR | MR | Zbl | Zbl