Waring's problem in natural numbers of special form
Sbornik. Mathematics, Tome 211 (2020) no. 5, pp. 733-749

Voir la notice de l'article provenant de la source Math-Net.Ru

Let $\mathbb N_0$ be the set of positive integers whose binary decompositions contain an even number of ones. We give a bound for the trigonometric sum of special form over numbers in $\mathbb N_0$; using this bound, we derive an asymptotic formula for the number of solutions to Waring's equation in positive integers in $\mathbb N_0$, and also a bound for the number of terms in the last equation, which is sufficient for the equation to be solvable in integers in $\mathbb N_0$. Bibliography: 9 titles.
Keywords: Waring's problem, circle method, trigonometric sums.
@article{SM_2020_211_5_a4,
     author = {K. M. Eminyan},
     title = {Waring's problem in natural numbers of special form},
     journal = {Sbornik. Mathematics},
     pages = {733--749},
     publisher = {mathdoc},
     volume = {211},
     number = {5},
     year = {2020},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2020_211_5_a4/}
}
TY  - JOUR
AU  - K. M. Eminyan
TI  - Waring's problem in natural numbers of special form
JO  - Sbornik. Mathematics
PY  - 2020
SP  - 733
EP  - 749
VL  - 211
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SM_2020_211_5_a4/
LA  - en
ID  - SM_2020_211_5_a4
ER  - 
%0 Journal Article
%A K. M. Eminyan
%T Waring's problem in natural numbers of special form
%J Sbornik. Mathematics
%D 2020
%P 733-749
%V 211
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SM_2020_211_5_a4/
%G en
%F SM_2020_211_5_a4
K. M. Eminyan. Waring's problem in natural numbers of special form. Sbornik. Mathematics, Tome 211 (2020) no. 5, pp. 733-749. http://geodesic.mathdoc.fr/item/SM_2020_211_5_a4/