Kripke semantics for the logic of problems and propositions
Sbornik. Mathematics, Tome 211 (2020) no. 5, pp. 709-732

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper we study the propositional fragment $\mathrm{HC}$ of the joint logic of problems and propositions introduced by Melikhov. We provide Kripke semantics for this logic and show that $\mathrm{HC}$ is complete with respect to those models and has the finite model property. We consider examples of the use of $\mathrm{HC}$-models usage. In particular, we prove that $\mathrm{HC}$ is a conservative extension of the logic $\mathrm{H4}$. We also show that the logic $\mathrm{HC}$ is complete with respect to Kripke frames with sets of audit worlds introduced by Artemov and Protopopescu (who called them audit set models). Bibliography: 31 titles.
Keywords: non-classical logics, Kripke semantics.
@article{SM_2020_211_5_a3,
     author = {A. A. Onoprienko},
     title = {Kripke semantics for the logic of problems and propositions},
     journal = {Sbornik. Mathematics},
     pages = {709--732},
     publisher = {mathdoc},
     volume = {211},
     number = {5},
     year = {2020},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2020_211_5_a3/}
}
TY  - JOUR
AU  - A. A. Onoprienko
TI  - Kripke semantics for the logic of problems and propositions
JO  - Sbornik. Mathematics
PY  - 2020
SP  - 709
EP  - 732
VL  - 211
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SM_2020_211_5_a3/
LA  - en
ID  - SM_2020_211_5_a3
ER  - 
%0 Journal Article
%A A. A. Onoprienko
%T Kripke semantics for the logic of problems and propositions
%J Sbornik. Mathematics
%D 2020
%P 709-732
%V 211
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SM_2020_211_5_a3/
%G en
%F SM_2020_211_5_a3
A. A. Onoprienko. Kripke semantics for the logic of problems and propositions. Sbornik. Mathematics, Tome 211 (2020) no. 5, pp. 709-732. http://geodesic.mathdoc.fr/item/SM_2020_211_5_a3/