@article{SM_2020_211_5_a2,
author = {A. A. Illarionov},
title = {The statistical properties of {3D} {Klein} polyhedra},
journal = {Sbornik. Mathematics},
pages = {689--708},
year = {2020},
volume = {211},
number = {5},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SM_2020_211_5_a2/}
}
A. A. Illarionov. The statistical properties of 3D Klein polyhedra. Sbornik. Mathematics, Tome 211 (2020) no. 5, pp. 689-708. http://geodesic.mathdoc.fr/item/SM_2020_211_5_a2/
[1] F. Klein, “Ueber eine geometrische Auffassung der gewöhnlichen Kettenbruchentwickelung”, Nachr. Ges. Wiss. Göttingen Math.-Phys. Kl., 3 (1895), 357–359 | Zbl
[2] V. I. Arnold, “$A$-graded algebras and continued fractions”, Comm. Pure Appl. Math., 42:7 (1989), 993–1000 | DOI | MR | Zbl
[3] V. I. Arnold, “Higher dimensional continued fractions”, Regul. Chaotic Dyn., 3:3 (1998), 10–17 | DOI | MR | Zbl
[4] V. I. Arnold, “Preface”, Pseudoperiodic topology, Amer. Math. Soc. Transl. Ser. 2, 197, Adv. Math. Sci., 46, Amer. Math. Soc., Providence, RI, 1999, ix–xii | DOI | MR | Zbl
[5] V. I. Arnold, Arnold's problems, Springer-Verlag, Berlin; PHASIS, Moscow, 2004, xvi+639 pp. | DOI | MR | MR | Zbl | Zbl
[6] H. Tsuchihashi, “Higher dimensional analogues of periodic continued fractions and cusp singularities”, Tohoku Math. J. (2), 35:4 (1983), 607–639 | DOI | MR | Zbl
[7] G. Lachaud, “Polyédre d'Arnol'd et voile d'un cône simplicial: analogues du théorème de Lagrange”, C. R. Acad. Sci. Paris Sŕ. I Math., 317:8 (1993), 711–716 | MR | Zbl
[8] G. Lachaud, “Sails and Klein polyhedra”, Number theory (Tiruchirapalli, 1996), Contemp. Math., 210, Amer. Math. Soc., Providence, RI, 1998, 373–385 | DOI | MR | Zbl
[9] E. Korkina, “La périodicité des fractions continues multidimensionnelles”, C. R. Acad. Sci. Paris Sér. I Math., 319:8 (1994), 777–780 | MR | Zbl
[10] E. I. Korkina, “Two-dimensional continued fractions. The simplest examples”, Proc. Steklov Inst. Math., 209 (1995), 124–144 | MR | Zbl
[11] A. D. Bruno, V. I. Parusnikov, “Klein polyhedrals for two cubic Davenport forms”, Math. Notes, 56:4 (1994), 994–1007 | DOI | MR | Zbl
[12] M. L. Kontsevich, Yu. M. Suhov, “Statistics of Klein polyhedra and multidimensional continued fractions”, Pseudoperiodic topology, Amer. Math. Soc. Transl. Ser. 2, 197, Adv. Math. Sci., 46, Amer. Math. Soc., Providence, RI, 1999, 9–27 | DOI | MR | Zbl
[13] J.-O. Moussafir, “Sails and Hilbert bases”, Funct. Anal. Appl., 34:2 (2000), 114–118 | DOI | DOI | MR | Zbl
[14] J.-O. Moussafir, Voiles et polyèdres de Klein. Géométrie, algorithmes et statistiques, Doc. Sci. Thése, Univ. Paris IX–Dauphine, Paris, 2000
[15] O. N. German, “Sails and norm minima of lattices”, Sb. Math., 196:3 (2005), 337–365 | DOI | DOI | MR | Zbl
[16] O. N. Karpenkov, “On an invariant Möbius measure and the Gauss–Kuzmin face distribution”, Proc. Steklov Inst. Math., 258:1 (2007), 74–86 | DOI | MR | Zbl
[17] O. N. German, E. L. Lakshtanov, “On a multidimensional generalization of Lagrange's theorem on continued fractions”, Izv. Math., 72:1 (2008), 47–61 | DOI | DOI | MR | Zbl
[18] O. N. Karpenkov, “Constructing multidimensional periodic continued fractions in the sense of Klein”, Math. Comp., 78:267 (2009), 1687–1711 | DOI | MR | Zbl
[19] A. V. Bykovskaya, “A multidimensional generalization of Lagrange's theorem on continued fractions”, Math. Notes, 92:3 (2012), 312–326 | DOI | DOI | MR | Zbl
[20] A. A. Illarionov, “On the statistical properties of Klein polyhedra in three-dimensional lattices”, Sb. Math., 204:6 (2013), 801–823 | DOI | DOI | MR | Zbl
[21] O. Karpenkov, Geometry of continued fractions, Algorithms Comput. Math., 26, Springer, Heidelberg, 2013, xviii+405 pp. | DOI | MR | Zbl
[22] I. A. Makarov, “Interior Klein polyhedra”, Math. Notes, 95:6 (2014), 795–805 | DOI | DOI | MR | Zbl
[23] A. A. Illarionov, “Some properties of three-dimensional Klein polyhedra”, Sb. Math., 206:4 (2015), 510–539 | DOI | DOI | MR | Zbl
[24] A. A. Illarionov, “Distribution of facets of higher-dimensional Klein polyhedra”, Sb. Math., 209:1 (2018), 56–70 | DOI | DOI | MR | Zbl
[25] A. A. Illarionov, “A multidimensional generalization of Heilbronn's theorem on the average length of a finite continued fraction”, Sb. Math., 205:3 (2014), 419–431 | DOI | DOI | MR | Zbl
[26] A. Illarionov, “On the asymptotic distribution of integer matrices”, Mosc. J. Comb. Number Theory, 1:4 (2011), 13–57 | MR | Zbl
[27] A. A. Illarionov, “Average number of local minima of three-dimensional integer lattices”, St. Petersburg Math. J., 23:3 (2012), 551–570 | DOI | MR | Zbl