The statistical properties of 3D Klein polyhedra
Sbornik. Mathematics, Tome 211 (2020) no. 5, pp. 689-708

Voir la notice de l'article provenant de la source Math-Net.Ru

Let $\Gamma$ be a rank-$s$ lattice in $\mathbb R^s$. The convex hulls of the nonzero lattice points lying in orthants are called the Klein polyhedra of $\Gamma$. This construction was introduced by Klein in 1895, in connection with generalizing the classical continued-fraction algorithm to the multidimensional case. Arnold stated a number of problems on the statistical and geometric properties of Klein polyhedra. In two dimensions the corresponding results follow from the theory of continued fractions. An asymptotic formula for the mean value of the $f$-vectors (the numbers of facets, edges and vertices) of 3D Klein polyhedra is derived. This mean value is taken over the Klein polyhedra of integer 3D lattices with determinants in $[1,R]$, where $R$ is an increasing parameter. Bibliography: 27 titles.
Keywords: Klein polyhedra, multidimensional continued fractions, lattices.
@article{SM_2020_211_5_a2,
     author = {A. A. Illarionov},
     title = {The statistical properties of {3D} {Klein} polyhedra},
     journal = {Sbornik. Mathematics},
     pages = {689--708},
     publisher = {mathdoc},
     volume = {211},
     number = {5},
     year = {2020},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2020_211_5_a2/}
}
TY  - JOUR
AU  - A. A. Illarionov
TI  - The statistical properties of 3D Klein polyhedra
JO  - Sbornik. Mathematics
PY  - 2020
SP  - 689
EP  - 708
VL  - 211
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SM_2020_211_5_a2/
LA  - en
ID  - SM_2020_211_5_a2
ER  - 
%0 Journal Article
%A A. A. Illarionov
%T The statistical properties of 3D Klein polyhedra
%J Sbornik. Mathematics
%D 2020
%P 689-708
%V 211
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SM_2020_211_5_a2/
%G en
%F SM_2020_211_5_a2
A. A. Illarionov. The statistical properties of 3D Klein polyhedra. Sbornik. Mathematics, Tome 211 (2020) no. 5, pp. 689-708. http://geodesic.mathdoc.fr/item/SM_2020_211_5_a2/