The statistical properties of 3D Klein polyhedra
Sbornik. Mathematics, Tome 211 (2020) no. 5, pp. 689-708 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Let $\Gamma$ be a rank-$s$ lattice in $\mathbb R^s$. The convex hulls of the nonzero lattice points lying in orthants are called the Klein polyhedra of $\Gamma$. This construction was introduced by Klein in 1895, in connection with generalizing the classical continued-fraction algorithm to the multidimensional case. Arnold stated a number of problems on the statistical and geometric properties of Klein polyhedra. In two dimensions the corresponding results follow from the theory of continued fractions. An asymptotic formula for the mean value of the $f$-vectors (the numbers of facets, edges and vertices) of 3D Klein polyhedra is derived. This mean value is taken over the Klein polyhedra of integer 3D lattices with determinants in $[1,R]$, where $R$ is an increasing parameter. Bibliography: 27 titles.
Keywords: Klein polyhedra, multidimensional continued fractions, lattices.
@article{SM_2020_211_5_a2,
     author = {A. A. Illarionov},
     title = {The statistical properties of {3D} {Klein} polyhedra},
     journal = {Sbornik. Mathematics},
     pages = {689--708},
     year = {2020},
     volume = {211},
     number = {5},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2020_211_5_a2/}
}
TY  - JOUR
AU  - A. A. Illarionov
TI  - The statistical properties of 3D Klein polyhedra
JO  - Sbornik. Mathematics
PY  - 2020
SP  - 689
EP  - 708
VL  - 211
IS  - 5
UR  - http://geodesic.mathdoc.fr/item/SM_2020_211_5_a2/
LA  - en
ID  - SM_2020_211_5_a2
ER  - 
%0 Journal Article
%A A. A. Illarionov
%T The statistical properties of 3D Klein polyhedra
%J Sbornik. Mathematics
%D 2020
%P 689-708
%V 211
%N 5
%U http://geodesic.mathdoc.fr/item/SM_2020_211_5_a2/
%G en
%F SM_2020_211_5_a2
A. A. Illarionov. The statistical properties of 3D Klein polyhedra. Sbornik. Mathematics, Tome 211 (2020) no. 5, pp. 689-708. http://geodesic.mathdoc.fr/item/SM_2020_211_5_a2/

[1] F. Klein, “Ueber eine geometrische Auffassung der gewöhnlichen Kettenbruchentwickelung”, Nachr. Ges. Wiss. Göttingen Math.-Phys. Kl., 3 (1895), 357–359 | Zbl

[2] V. I. Arnold, “$A$-graded algebras and continued fractions”, Comm. Pure Appl. Math., 42:7 (1989), 993–1000 | DOI | MR | Zbl

[3] V. I. Arnold, “Higher dimensional continued fractions”, Regul. Chaotic Dyn., 3:3 (1998), 10–17 | DOI | MR | Zbl

[4] V. I. Arnold, “Preface”, Pseudoperiodic topology, Amer. Math. Soc. Transl. Ser. 2, 197, Adv. Math. Sci., 46, Amer. Math. Soc., Providence, RI, 1999, ix–xii | DOI | MR | Zbl

[5] V. I. Arnold, Arnold's problems, Springer-Verlag, Berlin; PHASIS, Moscow, 2004, xvi+639 pp. | DOI | MR | MR | Zbl | Zbl

[6] H. Tsuchihashi, “Higher dimensional analogues of periodic continued fractions and cusp singularities”, Tohoku Math. J. (2), 35:4 (1983), 607–639 | DOI | MR | Zbl

[7] G. Lachaud, “Polyédre d'Arnol'd et voile d'un cône simplicial: analogues du théorème de Lagrange”, C. R. Acad. Sci. Paris Sŕ. I Math., 317:8 (1993), 711–716 | MR | Zbl

[8] G. Lachaud, “Sails and Klein polyhedra”, Number theory (Tiruchirapalli, 1996), Contemp. Math., 210, Amer. Math. Soc., Providence, RI, 1998, 373–385 | DOI | MR | Zbl

[9] E. Korkina, “La périodicité des fractions continues multidimensionnelles”, C. R. Acad. Sci. Paris Sér. I Math., 319:8 (1994), 777–780 | MR | Zbl

[10] E. I. Korkina, “Two-dimensional continued fractions. The simplest examples”, Proc. Steklov Inst. Math., 209 (1995), 124–144 | MR | Zbl

[11] A. D. Bruno, V. I. Parusnikov, “Klein polyhedrals for two cubic Davenport forms”, Math. Notes, 56:4 (1994), 994–1007 | DOI | MR | Zbl

[12] M. L. Kontsevich, Yu. M. Suhov, “Statistics of Klein polyhedra and multidimensional continued fractions”, Pseudoperiodic topology, Amer. Math. Soc. Transl. Ser. 2, 197, Adv. Math. Sci., 46, Amer. Math. Soc., Providence, RI, 1999, 9–27 | DOI | MR | Zbl

[13] J.-O. Moussafir, “Sails and Hilbert bases”, Funct. Anal. Appl., 34:2 (2000), 114–118 | DOI | DOI | MR | Zbl

[14] J.-O. Moussafir, Voiles et polyèdres de Klein. Géométrie, algorithmes et statistiques, Doc. Sci. Thése, Univ. Paris IX–Dauphine, Paris, 2000

[15] O. N. German, “Sails and norm minima of lattices”, Sb. Math., 196:3 (2005), 337–365 | DOI | DOI | MR | Zbl

[16] O. N. Karpenkov, “On an invariant Möbius measure and the Gauss–Kuzmin face distribution”, Proc. Steklov Inst. Math., 258:1 (2007), 74–86 | DOI | MR | Zbl

[17] O. N. German, E. L. Lakshtanov, “On a multidimensional generalization of Lagrange's theorem on continued fractions”, Izv. Math., 72:1 (2008), 47–61 | DOI | DOI | MR | Zbl

[18] O. N. Karpenkov, “Constructing multidimensional periodic continued fractions in the sense of Klein”, Math. Comp., 78:267 (2009), 1687–1711 | DOI | MR | Zbl

[19] A. V. Bykovskaya, “A multidimensional generalization of Lagrange's theorem on continued fractions”, Math. Notes, 92:3 (2012), 312–326 | DOI | DOI | MR | Zbl

[20] A. A. Illarionov, “On the statistical properties of Klein polyhedra in three-dimensional lattices”, Sb. Math., 204:6 (2013), 801–823 | DOI | DOI | MR | Zbl

[21] O. Karpenkov, Geometry of continued fractions, Algorithms Comput. Math., 26, Springer, Heidelberg, 2013, xviii+405 pp. | DOI | MR | Zbl

[22] I. A. Makarov, “Interior Klein polyhedra”, Math. Notes, 95:6 (2014), 795–805 | DOI | DOI | MR | Zbl

[23] A. A. Illarionov, “Some properties of three-dimensional Klein polyhedra”, Sb. Math., 206:4 (2015), 510–539 | DOI | DOI | MR | Zbl

[24] A. A. Illarionov, “Distribution of facets of higher-dimensional Klein polyhedra”, Sb. Math., 209:1 (2018), 56–70 | DOI | DOI | MR | Zbl

[25] A. A. Illarionov, “A multidimensional generalization of Heilbronn's theorem on the average length of a finite continued fraction”, Sb. Math., 205:3 (2014), 419–431 | DOI | DOI | MR | Zbl

[26] A. Illarionov, “On the asymptotic distribution of integer matrices”, Mosc. J. Comb. Number Theory, 1:4 (2011), 13–57 | MR | Zbl

[27] A. A. Illarionov, “Average number of local minima of three-dimensional integer lattices”, St. Petersburg Math. J., 23:3 (2012), 551–570 | DOI | MR | Zbl