The Cauchy problem for an abstract second order ordinary differential equation
Sbornik. Mathematics, Tome 211 (2020) no. 5, pp. 643-688

Voir la notice de l'article provenant de la source Math-Net.Ru

We prove the existence and uniqueness of a solution for the Cauchy problem for a linear abstract second order differential equation, obtain its representation, and prove that it is continuously dependent on the time at which the initial conditions are specified. Based on these results, we prove the existence and uniqueness of a solution of the Cauchy problem for a nonlinear abstract second order differential equation. This result is applied to show that the initial-boundary value problem for a nonlinear hyperbolic divergence structure equation has a unique solution. Bibliography: 49 titles.
Keywords: hyperbolic equation, partial differential equation, abstract equation.
@article{SM_2020_211_5_a1,
     author = {V. S. Gavrilov},
     title = {The {Cauchy} problem for an abstract second order ordinary differential equation},
     journal = {Sbornik. Mathematics},
     pages = {643--688},
     publisher = {mathdoc},
     volume = {211},
     number = {5},
     year = {2020},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2020_211_5_a1/}
}
TY  - JOUR
AU  - V. S. Gavrilov
TI  - The Cauchy problem for an abstract second order ordinary differential equation
JO  - Sbornik. Mathematics
PY  - 2020
SP  - 643
EP  - 688
VL  - 211
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SM_2020_211_5_a1/
LA  - en
ID  - SM_2020_211_5_a1
ER  - 
%0 Journal Article
%A V. S. Gavrilov
%T The Cauchy problem for an abstract second order ordinary differential equation
%J Sbornik. Mathematics
%D 2020
%P 643-688
%V 211
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SM_2020_211_5_a1/
%G en
%F SM_2020_211_5_a1
V. S. Gavrilov. The Cauchy problem for an abstract second order ordinary differential equation. Sbornik. Mathematics, Tome 211 (2020) no. 5, pp. 643-688. http://geodesic.mathdoc.fr/item/SM_2020_211_5_a1/