@article{SM_2020_211_5_a1,
author = {V. S. Gavrilov},
title = {The {Cauchy} problem for an abstract second order ordinary differential equation},
journal = {Sbornik. Mathematics},
pages = {643--688},
year = {2020},
volume = {211},
number = {5},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SM_2020_211_5_a1/}
}
V. S. Gavrilov. The Cauchy problem for an abstract second order ordinary differential equation. Sbornik. Mathematics, Tome 211 (2020) no. 5, pp. 643-688. http://geodesic.mathdoc.fr/item/SM_2020_211_5_a1/
[1] V. A. Il'in, A. A. Kuleshov, “On some properties of generalized solutions of the wave equation in the classes $L_p$ and $W^1_p$ for $p\geq1$”, Differ. Equ., 48:11 (2012), 1470–1476 | DOI | MR | Zbl
[2] V. A. Il'in, A. A. Kuleshov, “Necessary and sufficient condition for the generalized solution of a mixed problem for the wave equation to belong to the class $L_p$ for $p\geq1$”, Differ. Equ., 48:12 (2012), 1572–1576 | DOI | MR | Zbl
[3] D. Del Santo, E. Mitidieri, “Blow-up of solutions of a hyperbolic system: the critical case”, Differ. Equ., 34:9 (1998), 1157–1163 | MR | Zbl
[4] V. A. Galaktionov, E. L. Mitidieri, S. I. Pohozaev, Blow-up for higher-order parabolic, hyperbolic, dispersion and Schrödinger equations, Monogr. Res. Notes Math., CRC Press, Boca Raton, FL, 2015, xxvi+543 pp. | DOI | MR | Zbl
[5] H. Kubo, “Lower bounds for the lifespan of solutions to nonlinear wave equations in elasticity”, Evolution equations of hyperbolic and Schrödinger type, Progr. Math., 301, Birkhäuser/Springer Basel AG, Basel, 2012, 187–212 | DOI | MR | Zbl
[6] H. Kubo, M. Ohta, “On the global behavior of classical solutions to coupled systems of semilinear wave equations”, New trends in the theory of hyperbolic equations, Oper. Theory Adv. Appl., 159, Adv. Partial Differ. Equ. (Basel), Birkhäuser, Basel, 2005, 113–211 | DOI | MR | Zbl
[7] A. Yu. Kolesov, N. Kh. Rozov, “Multifrequency parametric resonance in a non-linear wave equation”, Izv. Math., 66:6 (2002), 1131–1145 | DOI | DOI | MR | Zbl
[8] A. G. Ramm, “O povedenii resheniya kraevoi zadachi dlya giperbolicheskogo uravneniya pri $t\to\infty$”, Izv. vuzov. Matem., 1966, no. 1, 124–138 | MR | Zbl
[9] M. M. Cavalcanti, V. N. Domingos Cavalcanti, J. A. Soriano, “Global solvability and asymptotic stability for the wave equation with nonlinear boundary damping and source term”, Contributions to nonlinear analysis, Progr. Nonlinear Differential Equations Appl., 66, Birkhäuser, Basel, 2006, 161–184 | DOI | MR | Zbl
[10] R. C. Charão, E. Bisognin, V. Bisognin, A. F. Pazoto, “Asymptotic behavior of a Bernoulli–Euler type equation with nonlinear localized damping”, Contributions to nonlinear analysis, Progr. Nonlinear Differential Equations Appl., 66, Birkhäuser, Basel, 2006, 67–91 | DOI | MR | Zbl
[11] N. Karachalios, N. M. Stavrakakis, “Asymptotic behavior of solutions of some nonlinearly damped wave equations on $\mathbb{R}^N$”, Topol. Methods Nonlinear Anal., 18:1 (2001), 73–87 | DOI | MR | Zbl
[12] N. N. Bukesova, S. E. Zhelezovskii, “Convergence rate of the Galerkin method for a class of quasilinear operator differential equations”, Comput. Math. Math. Phys., 39:9 (1999), 1455–1467 | MR | Zbl
[13] I. I. Vorovich, “O nekotorykh pryamykh metodakh v nelineinoi teorii kolebanii pologikh obolochek”, Izv. AN SSSR. Ser. matem., 21:6 (1957), 747–784 | MR | Zbl
[14] S. E. Zhelezovskiĭ, “The Bubnov–Galerkin method for an abstract quasilinear problem on stationary motion”, Differ. Equ., 31:7 (1995), 1169–1179 | MR | Zbl
[15] S. E. Zhelezovskii, “Estimates for the rate of convergence of the Galerkin method for abstract hyperbolic equations”, Math. Notes, 69:2 (2001), 196–206 | DOI | DOI | MR | Zbl
[16] S. Ye. Zhelezovskiĭ, “Estimates of convergence rate of the projection-difference method for hyperbolic equations”, Russian Math. (Iz. VUZ), 46:1 (2002), 19–28 | MR | Zbl
[17] S. E. Zhelezovskii, “On error estimates in the Galerkin method for hyperbolic equations”, Siberian Math. J., 46:2 (2005), 293–304 | DOI | MR | Zbl
[18] S. E. Zhelezovskii, “On the justification of the Galerkin method for hyperbolic equations”, Differ. Equ., 43:3 (2007), 417–425 | DOI | MR | Zbl
[19] S. E. Zhelezovskii, “Study of convergence of the projection-difference method for hyperbolic equations”, Siberian Math. J., 48:1 (2007), 76–83 | DOI | MR | Zbl
[20] S. E. Zhelezovskii, N. N. Bukesova, “The estimates of error of projection method for an abstract quasilinear hyperbolic equation”, Russian Math. (Iz. VUZ), 43:5 (1999), 90–92 | MR | Zbl
[21] S. E. Zhelezovskii, A. D. Lyashko, “Error estimates of the Galerkin method for quasilinear hyperbolic equations”, Differ. Equ., 37:7 (2001), 988–997 | DOI | MR | Zbl
[22] A. Z. Ishmukhametov, “The approximation of second-order hyperbolic differential-operator equations”, U.S.S.R. Comput. Math. Math. Phys., 27:4 (1987), 127–135 | DOI | MR | Zbl
[23] L. Bales, I. Lasiecka, “Negative norm estimates for fully discrete finite element approximations to the wave equation with nonhomogeneous $L_2$ Dirichlet boundary data”, Math. Comp., 64:209 (1995), 89–115 | DOI | MR | Zbl
[24] I. Lasiecka, J. Sokolowski, “Regularity and strong convergence of a variational approximation to a nonhomogeneous Dirichlet hyperbolic boundary problem”, SIAM J. Math. Anal., 19:3 (1988), 528–540 | DOI | MR | Zbl
[25] O. A. Ladyženskaja, “On the solution of nonstationary operator equations”, Amer. Math. Soc. Transl. Ser. 2, 65, Amer. Math. Soc., Providence, RI, 1967, 200–236 | DOI | MR | Zbl
[26] O. A. Ladyzhenskaya, The boundary value problems of mathematical physics, Appl. Math. Sci., 49, Springer-Verlag, New York, 1985, xxx+322 pp. | DOI | MR | MR | Zbl | Zbl
[27] J.-L. Lions, Quelques méthodes de résolution des problèmes aux limites non linéaires, Dunod, Paris; Gauthier-Villars, Paris, 1969, xx+554 pp. | MR | MR | Zbl | Zbl
[28] J.-L. Lions, E. Magenes, Problèmes aux limites non homogènes et applications, v. 1, Travaux et Recherches Mathématiques, 17, Dunod, Paris, 1968, xx+372 pp. | MR | MR | Zbl | Zbl
[29] F. E. Lomovtsev, “Hyperbolic second-order differential equations with discontinuous operator coefficients”, Differ. Equ., 33:10 (1997), 1400–1409 | MR | Zbl
[30] A. A. Nikitin, “On the mixed problem for the wave equation with the third and first boundary conditions”, Differ. Equ., 43:12 (2007), 1733–1741 | DOI | MR | Zbl
[31] S. Ya. Yakubov, “Ravnomerno korrektnaya zadacha Koshi dlya abstraktnykh giperbolicheskikh uravnenii”, Izv. vuzov. Matem., 1970, no. 12, 108–113 | MR | Zbl
[32] T. Aiki, T. Okazaki, “One-dimensional shape memory alloy problem with Duhem type of hysteresis operator”, Free boundary problems, Internat. Ser. Numer. Math., 154, Birkhäuser, Basel, 2007, 1–9 | DOI | MR | Zbl
[33] I. D. Chueshov, Introduction to the theory of infinite-dimensional dissipative systems, ACTA, Kharkiv, 2002, 418 pp. | MR | Zbl | Zbl
[34] I. Chueshov, I. Lasiecka, “Well-posedness and long time behavior in nonlinear dissipative hyperbolic-like evolutions with critical exponents”, HCDTE lecture notes. Part I. Nonlinear hyperbolic PDEs, dispersive and transport equations, AIMS Ser. Appl. Math., 6, Am. Inst. Math. Sci. (AIMS), Springfield, MO, 2013, 1–96 | MR | Zbl
[35] I. Lasiecka, J.-L. Lions, R. Triggiani, “Non homogeneous boundary value problems for second-order hyperbolic operators”, J. Math. Pures Appl. (9), 65:2 (1986), 149–192 | MR | Zbl
[36] I. Lasiecka, R. Triggiani, “Sharp regularity theory for second order hyperbolic equations of Neumann type. I. $L_2$ nonhomogeneous data”, Ann. Mat. Pura Appl. (4), 157 (1990), 285–367 | DOI | MR | Zbl
[37] I. Lasiecka, R. Triggiani, “Regularity theory of hyperbolic equations with non-homogeneous Neumann boundary conditions. II. General boundary data”, J. Differential Equations, 94:1 (1991), 112–164 | DOI | MR | Zbl
[38] M. Nakao, “Decay and global existence for nonlinear wave equations with localized dissipations in general exterior domains”, New trends in the theory of hyperbolic equations, Oper. Theory Adv. Appl., 159, Adv. Partial Differ. Equ. (Basel), Birkhäuser, Basel, 2005, 213–299 | DOI | MR | Zbl
[39] K. Yagdjian, “Global existence in the Cauchy problem for nonlinear wave equations with variable speed of propagation”, New trends in the theory of hyperbolic equations, Oper. Theory Adv. Appl., 159, Adv. Partial Differ. Equ. (Basel), Birkhäuser, Basel, 2005, 301–385 | DOI | MR | Zbl
[40] Zheng Li, Yaguang Wang, “Behavior of discontinuities in thermoelasticity with second sound”, Some problems on nonlinear hyperbolic equations and applications, Ser. Contemp. Appl. Math. CAM, 15, Higher Ed. Press, Beijing, 2010, 213–224 | DOI | MR | Zbl
[41] V. S. Gavrilov, M. I. Sumin, “Printsip maksimuma Pontryagina v parametricheskoi zadache suboptimalnogo upravleniya dlya divergentnogo giperbolicheskogo uravneniya s fazovym ogranicheniem”, Mezhdunarodnaya konferentsiya “Differentsialnye uravneniya i topologiya”, posvyaschennaya 100-letiyu L. S. Pontryagina. Tezisy dokladov (Moskva, 2008), MAKS Press, M., 2008, 329–330
[42] V. S. Gavrilov, M. I. Sumin, “Parametric optimization for a hyperbolic equation in divergence form with a pointwise state constraint. I”, Differ. Equ., 47:4 (2011), 547–559 | DOI | MR | Zbl
[43] V. S. Gavrilov, M. I. Sumin, “Parametric optimization for a hyperbolic equation in divergence form with a pointwise state constraint. II”, Differ. Equ., 47:5 (2011), 726–737 | DOI | MR | Zbl
[44] V. S. Gavrilov, “Existence and uniqueness of solutions of hyperbolic equations in divergence form with various boundary conditions on various parts of the boundary”, Differ. Equ., 52:8 (2016), 1011–1022 | DOI | DOI | MR | Zbl
[45] E. Hille, R. S. Phillips, Functional analysis and semi-groups, Amer. Math. Soc. Colloq. Publ., 31, Rev. ed., Amer. Math. Soc., Providence, RI, 1957, xii+808 pp. | MR | MR | Zbl
[46] Yu. S. Osipov, F. P. Vasilev, M. M. Potapov, Osnovy metoda dinamicheskoi regulyarizatsii, Izd-vo Mosk. un-ta, M., 1999, 237 pp.
[47] V. M. Alekseev, V. M. Tikhomirov, S. V. Fomin, Optimal control, Contemp. Soviet Math., Consultants Bureau, New York, 1987, xiv+309 pp. | DOI | MR | MR | Zbl | Zbl
[48] K. Yosida, Functional analysis, Grundlehren Math. Wiss., 123, Academic Press, Inc., New York; Springer-Verlag, Berlin, 1965, xi+458 pp. | MR | MR | Zbl | Zbl
[49] O. A. Ladyzhenskaya, N. N. Ural'tseva, Linear and quasilinear elliptic equations, Academic Press, New York–London, 1968, xviii+495 pp. | MR | MR | Zbl | Zbl