@article{SM_2020_211_5_a0,
author = {A. A. Borisenko and D. D. Sukhorebska},
title = {Simple closed geodesics on regular tetrahedra in {Lobachevsky} space},
journal = {Sbornik. Mathematics},
pages = {617--642},
year = {2020},
volume = {211},
number = {5},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SM_2020_211_5_a0/}
}
A. A. Borisenko; D. D. Sukhorebska. Simple closed geodesics on regular tetrahedra in Lobachevsky space. Sbornik. Mathematics, Tome 211 (2020) no. 5, pp. 617-642. http://geodesic.mathdoc.fr/item/SM_2020_211_5_a0/
[1] G. D. Birkhoff, Dynamical systems, Amer. Math. Soc. Colloq. Publ., 9, Amer. Math. Soc., Providence, RI, 1927, viii+295 pp. | MR | Zbl | Zbl
[2] L. Lusternik, L. Schnirelmann, “Sur le problème de troix géodésique fermees sur les surfaces de genre 0”, C. R. Acad. Sci. Paris, 189 (1929), 269–271 | Zbl
[3] D. V. Anosov, “Geodesic flows on closed Riemannian manifolds with negative curvature”, Proc. Steklov Inst. Math., 90 (1967), 1–235 | MR | Zbl
[4] I. A. Taimanov, “Closed extremals on two-dimensional manifolds”, Russian Math. Surveys, 47:2 (1992), 163–211 | DOI | MR | Zbl
[5] L. A. Lyusternik, A. I. Fet, “Variatsionnye zadachi na zamknutykh mnogoobraziyakh”, Dokl. AN SSSR, 81:1 (1951), 17–18 | MR | Zbl
[6] A. I. Fet, “A periodic problem in the calculus of variations”, Soviet Math. Dokl., 6 (1965), 85–88 | MR | Zbl
[7] W. Klingenberg, Lectures on closed geodesics, Grundlehren Math. Wiss., 230, Springer-Verlag, Berlin–New York, 1978, x+227 pp. | DOI | MR | MR | Zbl | Zbl
[8] H. Huber, “Zur analytischen Theorie hyperbolischer Raumformen und Bewegungsgruppen”, Math. Ann., 138:1 (1959), 1–26 | DOI | MR | Zbl
[9] H. Huber, “Zur analytischen Theorie hyperbolischer Raumformen und Bewegungsgruppen. II”, Math. Ann., 143 (1961), 463–464 | DOI | MR | Zbl
[10] Ya. G. Sinai, “The asymptotic behavior of the number of closed geodesics on a compact manifold of negative curvature”, Amer. Math. Soc. Transl. Ser. 2, 73, Amer. Math. Soc., Providence, RI, 1968, 227–250 | DOI | MR | Zbl
[11] G. A. Margulis, “Applications of ergodic theory to the investigation of manifolds of negative curvature”, Funct. Anal. Appl., 3:4 (1969), 335–336 | DOI | MR | Zbl
[12] I. Rivin, “Simple curves on surfaces”, Geom. Dedicata, 87:1-3 (2001), 345–360 | DOI | MR | Zbl
[13] M. Mirzakhani, “Growth of the number of simple closed geodesics on hyperbolic surfaces”, Ann. of Math. (2), 168:1 (2008), 97–125 | DOI | MR | Zbl
[14] A. Cotton, D. Freeman, A. Gnepp, Ting Ng, J. Spivack, C. Yoder, “The isoperimetric problem on some singular surfaces”, J. Aust. Math. Soc., 78:2 (2005), 167–197 | DOI | MR | Zbl
[15] K. A. Lawson, J. L. Parish, C. M. Traub, A. G. Weyhaupt, “Coloring graphs to classify simple closed geodesics on convex deltahedra”, Int. J. Pure Appl. Math., 89:2 (2013), 1–19 | DOI
[16] D. Fuchs, E. Fuchs, “Closed geodesics on regular polyhedra”, Mosc. Math. J., 7:2 (2007), 265–279 | DOI | MR | Zbl
[17] D. B. Fuchs, Geodesics on a regular dodecahedron, Preprint No. 91, Max Planck Inst. Math., Bonn, 2009, 14 pp. http://webdoc.sub.gwdg.de/ebook/serien/e/mpi_mathematik/2010/2009_91.pdf
[18] V. Yu. Protasov, “Closed geodesics on the surface of a simplex”, Sb. Math., 198:2 (2007), 243–260 | DOI | DOI | MR | Zbl
[19] A. D. Aleksandrov, Vypuklye mnogogranniki, M.–L., GITTL, 1950, 428 pp. ; A. D. Alexandrow, Konvexe polyeder, Math. Lehrbucher und Monogr., VIII, Akademie-Verlag, Berlin, 1958, x+419 pp. ; A. D. Alexandrov, Convex polyhedra, Springer Monogr. Math., Springer-Verlag, Berlin, 2005, xii+539 с. | MR | Zbl | MR | Zbl | DOI | MR | Zbl
[20] V. V. Prasolov, Geometriya Lobachevskogo, 3-e izd., MTsNMO, M., 2004, 88 pp.
[21] Yu. D. Burago, V. A. Zalgaller, Vvedenie v rimanovu geometriyu, Nauka, SPb., 1994, 319 pp. | MR | Zbl
[22] G. H. Hardy, E. M. Wright, An introduction to the theory of numbers, 4th ed., reprint. with corr., Clarendon Press, Oxford, 1975, xvi+421 pp. | MR | Zbl