Simple closed geodesics on regular tetrahedra in Lobachevsky space
Sbornik. Mathematics, Tome 211 (2020) no. 5, pp. 617-642 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

All simple closed geodesics on regular tetrahedra in Lobachevsky space are described. The asymptotic behaviour is found for the number of simple closed geodesics of length $\leqslant L$, as $L$ tends to infinity. Bibliography: 22 titles.
Keywords: closed geodesics, regular tetrahedron, Lobachevsky space.
@article{SM_2020_211_5_a0,
     author = {A. A. Borisenko and D. D. Sukhorebska},
     title = {Simple closed geodesics on regular tetrahedra in {Lobachevsky} space},
     journal = {Sbornik. Mathematics},
     pages = {617--642},
     year = {2020},
     volume = {211},
     number = {5},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2020_211_5_a0/}
}
TY  - JOUR
AU  - A. A. Borisenko
AU  - D. D. Sukhorebska
TI  - Simple closed geodesics on regular tetrahedra in Lobachevsky space
JO  - Sbornik. Mathematics
PY  - 2020
SP  - 617
EP  - 642
VL  - 211
IS  - 5
UR  - http://geodesic.mathdoc.fr/item/SM_2020_211_5_a0/
LA  - en
ID  - SM_2020_211_5_a0
ER  - 
%0 Journal Article
%A A. A. Borisenko
%A D. D. Sukhorebska
%T Simple closed geodesics on regular tetrahedra in Lobachevsky space
%J Sbornik. Mathematics
%D 2020
%P 617-642
%V 211
%N 5
%U http://geodesic.mathdoc.fr/item/SM_2020_211_5_a0/
%G en
%F SM_2020_211_5_a0
A. A. Borisenko; D. D. Sukhorebska. Simple closed geodesics on regular tetrahedra in Lobachevsky space. Sbornik. Mathematics, Tome 211 (2020) no. 5, pp. 617-642. http://geodesic.mathdoc.fr/item/SM_2020_211_5_a0/

[1] G. D. Birkhoff, Dynamical systems, Amer. Math. Soc. Colloq. Publ., 9, Amer. Math. Soc., Providence, RI, 1927, viii+295 pp. | MR | Zbl | Zbl

[2] L. Lusternik, L. Schnirelmann, “Sur le problème de troix géodésique fermees sur les surfaces de genre 0”, C. R. Acad. Sci. Paris, 189 (1929), 269–271 | Zbl

[3] D. V. Anosov, “Geodesic flows on closed Riemannian manifolds with negative curvature”, Proc. Steklov Inst. Math., 90 (1967), 1–235 | MR | Zbl

[4] I. A. Taimanov, “Closed extremals on two-dimensional manifolds”, Russian Math. Surveys, 47:2 (1992), 163–211 | DOI | MR | Zbl

[5] L. A. Lyusternik, A. I. Fet, “Variatsionnye zadachi na zamknutykh mnogoobraziyakh”, Dokl. AN SSSR, 81:1 (1951), 17–18 | MR | Zbl

[6] A. I. Fet, “A periodic problem in the calculus of variations”, Soviet Math. Dokl., 6 (1965), 85–88 | MR | Zbl

[7] W. Klingenberg, Lectures on closed geodesics, Grundlehren Math. Wiss., 230, Springer-Verlag, Berlin–New York, 1978, x+227 pp. | DOI | MR | MR | Zbl | Zbl

[8] H. Huber, “Zur analytischen Theorie hyperbolischer Raumformen und Bewegungsgruppen”, Math. Ann., 138:1 (1959), 1–26 | DOI | MR | Zbl

[9] H. Huber, “Zur analytischen Theorie hyperbolischer Raumformen und Bewegungsgruppen. II”, Math. Ann., 143 (1961), 463–464 | DOI | MR | Zbl

[10] Ya. G. Sinai, “The asymptotic behavior of the number of closed geodesics on a compact manifold of negative curvature”, Amer. Math. Soc. Transl. Ser. 2, 73, Amer. Math. Soc., Providence, RI, 1968, 227–250 | DOI | MR | Zbl

[11] G. A. Margulis, “Applications of ergodic theory to the investigation of manifolds of negative curvature”, Funct. Anal. Appl., 3:4 (1969), 335–336 | DOI | MR | Zbl

[12] I. Rivin, “Simple curves on surfaces”, Geom. Dedicata, 87:1-3 (2001), 345–360 | DOI | MR | Zbl

[13] M. Mirzakhani, “Growth of the number of simple closed geodesics on hyperbolic surfaces”, Ann. of Math. (2), 168:1 (2008), 97–125 | DOI | MR | Zbl

[14] A. Cotton, D. Freeman, A. Gnepp, Ting Ng, J. Spivack, C. Yoder, “The isoperimetric problem on some singular surfaces”, J. Aust. Math. Soc., 78:2 (2005), 167–197 | DOI | MR | Zbl

[15] K. A. Lawson, J. L. Parish, C. M. Traub, A. G. Weyhaupt, “Coloring graphs to classify simple closed geodesics on convex deltahedra”, Int. J. Pure Appl. Math., 89:2 (2013), 1–19 | DOI

[16] D. Fuchs, E. Fuchs, “Closed geodesics on regular polyhedra”, Mosc. Math. J., 7:2 (2007), 265–279 | DOI | MR | Zbl

[17] D. B. Fuchs, Geodesics on a regular dodecahedron, Preprint No. 91, Max Planck Inst. Math., Bonn, 2009, 14 pp. http://webdoc.sub.gwdg.de/ebook/serien/e/mpi_mathematik/2010/2009_91.pdf

[18] V. Yu. Protasov, “Closed geodesics on the surface of a simplex”, Sb. Math., 198:2 (2007), 243–260 | DOI | DOI | MR | Zbl

[19] A. D. Aleksandrov, Vypuklye mnogogranniki, M.–L., GITTL, 1950, 428 pp. ; A. D. Alexandrow, Konvexe polyeder, Math. Lehrbucher und Monogr., VIII, Akademie-Verlag, Berlin, 1958, x+419 pp. ; A. D. Alexandrov, Convex polyhedra, Springer Monogr. Math., Springer-Verlag, Berlin, 2005, xii+539 с. | MR | Zbl | MR | Zbl | DOI | MR | Zbl

[20] V. V. Prasolov, Geometriya Lobachevskogo, 3-e izd., MTsNMO, M., 2004, 88 pp.

[21] Yu. D. Burago, V. A. Zalgaller, Vvedenie v rimanovu geometriyu, Nauka, SPb., 1994, 319 pp. | MR | Zbl

[22] G. H. Hardy, E. M. Wright, An introduction to the theory of numbers, 4th ed., reprint. with corr., Clarendon Press, Oxford, 1975, xvi+421 pp. | MR | Zbl