On ergodic flows with simple Lebesgue spectrum
Sbornik. Mathematics, Tome 211 (2020) no. 4, pp. 594-615

Voir la notice de l'article provenant de la source Math-Net.Ru

We prove the existence of ergodic flows with invariant probability measure having a Lebesgue spectrum of multiplicity $1$. Bibliography: 15 titles.
Keywords: Banach problem, flows of rank $1$, Littlewood polynomials.
Mots-clés : simple Lebesgue spectrum
@article{SM_2020_211_4_a5,
     author = {A. A. Prikhod'ko},
     title = {On ergodic flows with simple {Lebesgue} spectrum},
     journal = {Sbornik. Mathematics},
     pages = {594--615},
     publisher = {mathdoc},
     volume = {211},
     number = {4},
     year = {2020},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2020_211_4_a5/}
}
TY  - JOUR
AU  - A. A. Prikhod'ko
TI  - On ergodic flows with simple Lebesgue spectrum
JO  - Sbornik. Mathematics
PY  - 2020
SP  - 594
EP  - 615
VL  - 211
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SM_2020_211_4_a5/
LA  - en
ID  - SM_2020_211_4_a5
ER  - 
%0 Journal Article
%A A. A. Prikhod'ko
%T On ergodic flows with simple Lebesgue spectrum
%J Sbornik. Mathematics
%D 2020
%P 594-615
%V 211
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SM_2020_211_4_a5/
%G en
%F SM_2020_211_4_a5
A. A. Prikhod'ko. On ergodic flows with simple Lebesgue spectrum. Sbornik. Mathematics, Tome 211 (2020) no. 4, pp. 594-615. http://geodesic.mathdoc.fr/item/SM_2020_211_4_a5/