On ergodic flows with simple Lebesgue spectrum
Sbornik. Mathematics, Tome 211 (2020) no. 4, pp. 594-615 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We prove the existence of ergodic flows with invariant probability measure having a Lebesgue spectrum of multiplicity $1$. Bibliography: 15 titles.
Keywords: Banach problem, flows of rank $1$, Littlewood polynomials.
Mots-clés : simple Lebesgue spectrum
@article{SM_2020_211_4_a5,
     author = {A. A. Prikhod'ko},
     title = {On ergodic flows with simple {Lebesgue} spectrum},
     journal = {Sbornik. Mathematics},
     pages = {594--615},
     year = {2020},
     volume = {211},
     number = {4},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2020_211_4_a5/}
}
TY  - JOUR
AU  - A. A. Prikhod'ko
TI  - On ergodic flows with simple Lebesgue spectrum
JO  - Sbornik. Mathematics
PY  - 2020
SP  - 594
EP  - 615
VL  - 211
IS  - 4
UR  - http://geodesic.mathdoc.fr/item/SM_2020_211_4_a5/
LA  - en
ID  - SM_2020_211_4_a5
ER  - 
%0 Journal Article
%A A. A. Prikhod'ko
%T On ergodic flows with simple Lebesgue spectrum
%J Sbornik. Mathematics
%D 2020
%P 594-615
%V 211
%N 4
%U http://geodesic.mathdoc.fr/item/SM_2020_211_4_a5/
%G en
%F SM_2020_211_4_a5
A. A. Prikhod'ko. On ergodic flows with simple Lebesgue spectrum. Sbornik. Mathematics, Tome 211 (2020) no. 4, pp. 594-615. http://geodesic.mathdoc.fr/item/SM_2020_211_4_a5/

[1] I. P. Kornfeld, Ya. G. Sinai, S. V. Fomin, Ergodicheskaya teoriya, Nauka, M., 1980, 384 pp. ; I. P. Cornfeld, S. V. Fomin, Ya. G. Sinai, Ergodic theory, Grundlehren Math. Wiss., 245, Springer-Verlag, New York, 1982, x+486 pp. | MR | Zbl | DOI | MR | Zbl

[2] A. Katok, J.-P. Thouvenot, “Spectral properties and combinatorial constructions in ergodic theory”, Handbook of dynamical systems, v. 1B, Elsevier B. V., Amsterdam, 2006, 649–743 | DOI | MR | Zbl

[3] M. Lemańczyk, “Spectral theory of dynamical systems”, Encyclopedia of Complexity and System Science, Springer, New York, 2009, 8554–8575 | DOI

[4] D. V. Anosov, “O spektralnykh kratnostyakh v ergodicheskoi teorii”, Sovr. probl. matem., 3, MIAN, M., 2003, 3–85 ; D. V. Anosov, “Spectral multiplicity in ergodic theory”, Proc. Steklov Inst. Math., 290, suppl. 1 (2015), 1–44 | DOI | MR | Zbl | DOI

[5] S. Ulam, Nereshennye matematicheskie zadachi, Nauka, M., 1964, 168 pp. ; S. M. Ulam, A collection of mathematical problems, Interscience Tracts in Pure and Applied Mathematics, 8, Interscience Publishers, New York–London, 1960, xiii+150 pp. | Zbl | MR | Zbl

[6] A. A. Kirillov, “Dinamicheskie sistemy, faktory i predstavleniya grupp”, UMN, 22:5(137) (1967), 67–80 | MR | Zbl

[7] A. A. Prikhodko, “Polinomy Litlvuda i ikh prilozheniya k spektralnoi teorii dinamicheskikh sistem”, Matem. sb., 204:6 (2013), 135–160 | DOI | MR | Zbl

[8] J. E. Littlewood, “On polynomials $\sum^n \pm z^m$, $\sum^n e^{\alpha_m i} z^m$, $z = e^{\theta_i}$”, J. London Math. Soc., 41 (1966), 367–376 | DOI | MR | Zbl

[9] T. Erdélyi, “Polynomials with Littlewood-type coefficient constraints”, Approximation theory X. Abstract and classical analysis (St. Louis, MO, 2001), Innov. Appl. Math., Vanderbilt Univ. Press, Nashville, TN, 2002, 153–196 | MR | Zbl

[10] J.-P. Kahane, “Sur les polynômes à coefficient unimodulaires”, Bull. London Math. Soc., 12:5 (1980), 321–342 | DOI | MR | Zbl

[11] A. A. Prikhodko, “Stokhasticheskie konstruktsii potokov ranga 1”, Matem. sb., 192:12 (2001), 61–92 | DOI | MR | Zbl

[12] J. Bourgain, “On the spectral type of Ornstein's class one transformations”, Israel J. Math., 84:1-2 (1993), 53–63 | DOI | MR | Zbl

[13] D. S. Ornstein, “On the root problem in ergodic theory”, Proceedings of the 6th Berkeley symposium on mathematical statistics and probability (Univ. California, Berkeley, Calif., 1970/1971), v. II, Probability theory, Univ. California Press, Berkeley, CA, 1972, 347–356 | MR | Zbl

[14] A. N. Shiryaev, Veroyatnost, Nauka, M., 1980, 576 pp. ; A. N. Shiryaev, Probability, Grad. Texts in Math., 95, 2nd ed., Springer-Verlag, New York, 1996, xvi+623 pp. | MR | Zbl | DOI | MR | Zbl

[15] A. A. Prikhod'ko, Singular Schaeffer–Salem measures of dynamical system origin, arXiv: 1205.6964v1