Completeness of commutative Sokolov-Odesskii subalgebras and Nijenhuis operators on $\operatorname{gl}(n)$
Sbornik. Mathematics, Tome 211 (2020) no. 4, pp. 583-593 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We prove the completeness of commutative subalgebras in the algebra $S(\operatorname{gl}(n))$ constructed from the algebraic Nijenhuis operators. The operators in question were proposed by Sokolov and Odesskii. Bibliography: 17 titles.
Keywords: integrable systems, algebraic Nijenhuis operators, Lie pencils.
Mots-clés : Lie algebras
@article{SM_2020_211_4_a4,
     author = {A. Yu. Konyaev},
     title = {Completeness of commutative {Sokolov-Odesskii} subalgebras and {Nijenhuis} operators on~$\operatorname{gl}(n)$},
     journal = {Sbornik. Mathematics},
     pages = {583--593},
     year = {2020},
     volume = {211},
     number = {4},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2020_211_4_a4/}
}
TY  - JOUR
AU  - A. Yu. Konyaev
TI  - Completeness of commutative Sokolov-Odesskii subalgebras and Nijenhuis operators on $\operatorname{gl}(n)$
JO  - Sbornik. Mathematics
PY  - 2020
SP  - 583
EP  - 593
VL  - 211
IS  - 4
UR  - http://geodesic.mathdoc.fr/item/SM_2020_211_4_a4/
LA  - en
ID  - SM_2020_211_4_a4
ER  - 
%0 Journal Article
%A A. Yu. Konyaev
%T Completeness of commutative Sokolov-Odesskii subalgebras and Nijenhuis operators on $\operatorname{gl}(n)$
%J Sbornik. Mathematics
%D 2020
%P 583-593
%V 211
%N 4
%U http://geodesic.mathdoc.fr/item/SM_2020_211_4_a4/
%G en
%F SM_2020_211_4_a4
A. Yu. Konyaev. Completeness of commutative Sokolov-Odesskii subalgebras and Nijenhuis operators on $\operatorname{gl}(n)$. Sbornik. Mathematics, Tome 211 (2020) no. 4, pp. 583-593. http://geodesic.mathdoc.fr/item/SM_2020_211_4_a4/

[1] A. T. Fomenko, Symplectic geometry, Adv. Stud. Contemp. Math., 5, 2nd ed., Gordon and Breach Publ., Luxembourg, 1995, xvi+467 pp. | MR | MR | Zbl | Zbl

[2] A. S. Mishchenko, A. T. Fomenko, “Integrability of Euler equations on semisimple Lie algebras”, Selecta Math. Soviet., 2 (1982), 207–291 | MR | Zbl

[3] A. S. Mishchenko, A. T. Fomenko, “Generalized Liouville method of integration of Hamiltonian systems”, Funct. Anal. Appl., 12:2 (1978), 113–121 | DOI | MR | Zbl

[4] A. S. Mishchenko, A. T. Fomenko, “Euler equations on finite-dimensional Lie groups”, Math. USSR-Izv., 12:2 (1978), 371–389 | DOI | MR | Zbl

[5] V. V. Trofimov, A. T. Fomenko, Algebra i geometriya integriruemykh gamiltonovykh differentsialnykh uravnenii, Matematika i ee prilozheniya, Faktorial, M.; Izd-vo Udmurtskogo gos. un-ta, Izhevsk, 1995, 448 pp. | MR | Zbl

[6] V. V. Trofimov, A. T. Fomenko, “Liouville integrability of Hamiltonian systems on Lie algebras”, Russian Math. Surveys, 39:2 (1984), 1–67 | DOI | MR | Zbl

[7] Y. Kosmann-Schwarzbach, F. Magri, “Poisson–Nijenhuis structures”, Ann. Inst. H. Poincaré Phys. Théor., 53:1 (1990), 35–81 | MR | Zbl

[8] A. Panasyuk, “Algebraic Nijenhuis operators and Kronecker Poisson pencils”, Differential Geom. Appl., 24:5 (2006), 482–491 | DOI | MR | Zbl

[9] A. V. Odesskii, V. V. Sokolov, “Integrable matrix equations related to pairs of compatible associative algebras”, J. Phys. A, 39:40 (2006), 12447–12456 | DOI | MR | Zbl

[10] A. V. Bolsinov, “Compatible Poisson brackets on Lie algebras and completeness of families of functions in involution”, Math. USSR-Izv., 38:1 (1992), 69–90 | DOI | MR | Zbl

[11] A. V. Bolsinov, A. V. Borisov, “Compatible Poisson brackets on Lie algebras”, Math. Notes, 72:1 (2002), 10–30 | DOI | DOI | MR | Zbl

[12] A. T. Fomenko, Integrability and nonintegrability in geometry and mechanics, Math. Appl. (Soviet Ser.), 31, Kluwer Acad. Publ., Dordrecht, 1988, xvi+343 pp. | DOI | MR | Zbl

[13] A. S. Mischenko, A. T. Fomenko, “Integrirovanie gamiltonovykh sistem s nekommutativnymi simmetriyami”, Trudy seminara po vektornomu i tenzornomu analizu, 20, Izd-vo Mosk. un-ta, M., 1981, 5–54 | MR | Zbl

[14] A. Yu. Konyaev, “Completeness of some commutative subalgebras associated with Nijenhuis operators on Lie algebras”, Dokl. Math., 97:2 (2018), 137–139 | DOI | DOI | MR | Zbl

[15] A. V. Bolsinov, “Multidimensional Euler and Clebsch cases and Lie pencils”, Tensor and vector analysis, Gordon and Breach Sci. Publ., Amsterdam, 1998, 25–30 | MR | Zbl

[16] E. Inonu, E. P. Wigner, “On the contraction of groups and their representations”, Proc. Nat. Acad. Sci. U.S.A., 39 (1953), 510–524 | DOI | MR | Zbl

[17] A. V. Bolsinov, Integriruemye po Liuvillyu gamiltonovy sistemy na algebrakh Li, Diss. ... kand. fiz.-matem. nauk, MGU, M., 1987, 93 pp. http://dfgm.math.msu.su/files/0diss/diss-bolsinov.pdf