Completeness of commutative Sokolov-Odesskii subalgebras and Nijenhuis operators on~$\operatorname{gl}(n)$
Sbornik. Mathematics, Tome 211 (2020) no. 4, pp. 583-593
Voir la notice de l'article provenant de la source Math-Net.Ru
We prove the completeness of commutative subalgebras in the algebra $S(\operatorname{gl}(n))$ constructed from the algebraic Nijenhuis operators. The operators in question were proposed by Sokolov and Odesskii.
Bibliography: 17 titles.
Keywords:
integrable systems, algebraic Nijenhuis operators, Lie pencils.
Mots-clés : Lie algebras
Mots-clés : Lie algebras
@article{SM_2020_211_4_a4,
author = {A. Yu. Konyaev},
title = {Completeness of commutative {Sokolov-Odesskii} subalgebras and {Nijenhuis} operators on~$\operatorname{gl}(n)$},
journal = {Sbornik. Mathematics},
pages = {583--593},
publisher = {mathdoc},
volume = {211},
number = {4},
year = {2020},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SM_2020_211_4_a4/}
}
TY - JOUR
AU - A. Yu. Konyaev
TI - Completeness of commutative Sokolov-Odesskii subalgebras and Nijenhuis operators on~$\operatorname{gl}(n)$
JO - Sbornik. Mathematics
PY - 2020
SP - 583
EP - 593
VL - 211
IS - 4
PB - mathdoc
UR - http://geodesic.mathdoc.fr/item/SM_2020_211_4_a4/
LA - en
ID - SM_2020_211_4_a4
ER -
A. Yu. Konyaev. Completeness of commutative Sokolov-Odesskii subalgebras and Nijenhuis operators on~$\operatorname{gl}(n)$. Sbornik. Mathematics, Tome 211 (2020) no. 4, pp. 583-593. http://geodesic.mathdoc.fr/item/SM_2020_211_4_a4/