Completeness of commutative Sokolov-Odesskii subalgebras and Nijenhuis operators on~$\operatorname{gl}(n)$
Sbornik. Mathematics, Tome 211 (2020) no. 4, pp. 583-593

Voir la notice de l'article provenant de la source Math-Net.Ru

We prove the completeness of commutative subalgebras in the algebra $S(\operatorname{gl}(n))$ constructed from the algebraic Nijenhuis operators. The operators in question were proposed by Sokolov and Odesskii. Bibliography: 17 titles.
Keywords: integrable systems, algebraic Nijenhuis operators, Lie pencils.
Mots-clés : Lie algebras
@article{SM_2020_211_4_a4,
     author = {A. Yu. Konyaev},
     title = {Completeness of commutative {Sokolov-Odesskii} subalgebras and {Nijenhuis} operators on~$\operatorname{gl}(n)$},
     journal = {Sbornik. Mathematics},
     pages = {583--593},
     publisher = {mathdoc},
     volume = {211},
     number = {4},
     year = {2020},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2020_211_4_a4/}
}
TY  - JOUR
AU  - A. Yu. Konyaev
TI  - Completeness of commutative Sokolov-Odesskii subalgebras and Nijenhuis operators on~$\operatorname{gl}(n)$
JO  - Sbornik. Mathematics
PY  - 2020
SP  - 583
EP  - 593
VL  - 211
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SM_2020_211_4_a4/
LA  - en
ID  - SM_2020_211_4_a4
ER  - 
%0 Journal Article
%A A. Yu. Konyaev
%T Completeness of commutative Sokolov-Odesskii subalgebras and Nijenhuis operators on~$\operatorname{gl}(n)$
%J Sbornik. Mathematics
%D 2020
%P 583-593
%V 211
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SM_2020_211_4_a4/
%G en
%F SM_2020_211_4_a4
A. Yu. Konyaev. Completeness of commutative Sokolov-Odesskii subalgebras and Nijenhuis operators on~$\operatorname{gl}(n)$. Sbornik. Mathematics, Tome 211 (2020) no. 4, pp. 583-593. http://geodesic.mathdoc.fr/item/SM_2020_211_4_a4/