Mots-clés : Lie algebras
@article{SM_2020_211_4_a4,
author = {A. Yu. Konyaev},
title = {Completeness of commutative {Sokolov-Odesskii} subalgebras and {Nijenhuis} operators on~$\operatorname{gl}(n)$},
journal = {Sbornik. Mathematics},
pages = {583--593},
year = {2020},
volume = {211},
number = {4},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SM_2020_211_4_a4/}
}
TY - JOUR
AU - A. Yu. Konyaev
TI - Completeness of commutative Sokolov-Odesskii subalgebras and Nijenhuis operators on $\operatorname{gl}(n)$
JO - Sbornik. Mathematics
PY - 2020
SP - 583
EP - 593
VL - 211
IS - 4
UR - http://geodesic.mathdoc.fr/item/SM_2020_211_4_a4/
LA - en
ID - SM_2020_211_4_a4
ER -
A. Yu. Konyaev. Completeness of commutative Sokolov-Odesskii subalgebras and Nijenhuis operators on $\operatorname{gl}(n)$. Sbornik. Mathematics, Tome 211 (2020) no. 4, pp. 583-593. http://geodesic.mathdoc.fr/item/SM_2020_211_4_a4/
[1] A. T. Fomenko, Symplectic geometry, Adv. Stud. Contemp. Math., 5, 2nd ed., Gordon and Breach Publ., Luxembourg, 1995, xvi+467 pp. | MR | MR | Zbl | Zbl
[2] A. S. Mishchenko, A. T. Fomenko, “Integrability of Euler equations on semisimple Lie algebras”, Selecta Math. Soviet., 2 (1982), 207–291 | MR | Zbl
[3] A. S. Mishchenko, A. T. Fomenko, “Generalized Liouville method of integration of Hamiltonian systems”, Funct. Anal. Appl., 12:2 (1978), 113–121 | DOI | MR | Zbl
[4] A. S. Mishchenko, A. T. Fomenko, “Euler equations on finite-dimensional Lie groups”, Math. USSR-Izv., 12:2 (1978), 371–389 | DOI | MR | Zbl
[5] V. V. Trofimov, A. T. Fomenko, Algebra i geometriya integriruemykh gamiltonovykh differentsialnykh uravnenii, Matematika i ee prilozheniya, Faktorial, M.; Izd-vo Udmurtskogo gos. un-ta, Izhevsk, 1995, 448 pp. | MR | Zbl
[6] V. V. Trofimov, A. T. Fomenko, “Liouville integrability of Hamiltonian systems on Lie algebras”, Russian Math. Surveys, 39:2 (1984), 1–67 | DOI | MR | Zbl
[7] Y. Kosmann-Schwarzbach, F. Magri, “Poisson–Nijenhuis structures”, Ann. Inst. H. Poincaré Phys. Théor., 53:1 (1990), 35–81 | MR | Zbl
[8] A. Panasyuk, “Algebraic Nijenhuis operators and Kronecker Poisson pencils”, Differential Geom. Appl., 24:5 (2006), 482–491 | DOI | MR | Zbl
[9] A. V. Odesskii, V. V. Sokolov, “Integrable matrix equations related to pairs of compatible associative algebras”, J. Phys. A, 39:40 (2006), 12447–12456 | DOI | MR | Zbl
[10] A. V. Bolsinov, “Compatible Poisson brackets on Lie algebras and completeness of families of functions in involution”, Math. USSR-Izv., 38:1 (1992), 69–90 | DOI | MR | Zbl
[11] A. V. Bolsinov, A. V. Borisov, “Compatible Poisson brackets on Lie algebras”, Math. Notes, 72:1 (2002), 10–30 | DOI | DOI | MR | Zbl
[12] A. T. Fomenko, Integrability and nonintegrability in geometry and mechanics, Math. Appl. (Soviet Ser.), 31, Kluwer Acad. Publ., Dordrecht, 1988, xvi+343 pp. | DOI | MR | Zbl
[13] A. S. Mischenko, A. T. Fomenko, “Integrirovanie gamiltonovykh sistem s nekommutativnymi simmetriyami”, Trudy seminara po vektornomu i tenzornomu analizu, 20, Izd-vo Mosk. un-ta, M., 1981, 5–54 | MR | Zbl
[14] A. Yu. Konyaev, “Completeness of some commutative subalgebras associated with Nijenhuis operators on Lie algebras”, Dokl. Math., 97:2 (2018), 137–139 | DOI | DOI | MR | Zbl
[15] A. V. Bolsinov, “Multidimensional Euler and Clebsch cases and Lie pencils”, Tensor and vector analysis, Gordon and Breach Sci. Publ., Amsterdam, 1998, 25–30 | MR | Zbl
[16] E. Inonu, E. P. Wigner, “On the contraction of groups and their representations”, Proc. Nat. Acad. Sci. U.S.A., 39 (1953), 510–524 | DOI | MR | Zbl
[17] A. V. Bolsinov, Integriruemye po Liuvillyu gamiltonovy sistemy na algebrakh Li, Diss. ... kand. fiz.-matem. nauk, MGU, M., 1987, 93 pp. http://dfgm.math.msu.su/files/0diss/diss-bolsinov.pdf