@article{SM_2020_211_4_a3,
author = {D. P. Ilyutko and E. A. Sevost'yanov},
title = {Boundary behaviour of open discrete mappings on {Riemannian} {manifolds.~II}},
journal = {Sbornik. Mathematics},
pages = {539--582},
year = {2020},
volume = {211},
number = {4},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SM_2020_211_4_a3/}
}
D. P. Ilyutko; E. A. Sevost'yanov. Boundary behaviour of open discrete mappings on Riemannian manifolds. II. Sbornik. Mathematics, Tome 211 (2020) no. 4, pp. 539-582. http://geodesic.mathdoc.fr/item/SM_2020_211_4_a3/
[1] T. Adamowicz, A. Björn, J. Björn, N. Shanmugalingam, “Prime ends for domains in metric spaces”, Adv. Math., 238 (2013), 459–505 | DOI | MR | Zbl
[2] T. Adamowicz, Prime ends in metric spaces and boundary extensions of mappings, arXiv: 1608.02393
[3] C. J. Bishop, V. Ya. Gutlyanskiĭ, O. Martio, M. Vuorinen, “On conformal dilatation in space”, Int. J. Math. Math. Sci., 2003, no. 22, 1397–1420 | DOI | MR | Zbl
[4] M. Cristea, “Open discrete mappings having local $ACL^n$ inverses”, Complex Var. Elliptic Equ., 55:1-3 (2010), 61–90 | DOI | MR | Zbl
[5] A. Golberg, “Differential properties of $(\alpha, Q)$-homeomorphisms”, Further progress in analysis, World Sci. Publ., Hackensack, NJ, 2009, 218–228 | DOI | MR | Zbl
[6] V. Gol'dshtein, A. Ukhlov, “Traces of functions of $L^1_2$ Dirichlet spaces on the Carathéodory boundary”, Studia Math., 235:3 (2016), 209–224 | DOI | MR | Zbl
[7] V. Ya. Gutlyanskiĭ, O. Martio, V. I. Ryazanov, M. Vuorinen, “On convergence theorems for space qusiregular mappings”, Forum Math., 10:3 (1998), 353–375 | DOI | MR | Zbl
[8] V. Ya. Gutlyanskiĭ, O. Martio, V. I. Ryazanov, M. Vuorinen, “On local injectivity and asymptotic linearity of quasiregular mappings”, Studia Math., 128:3 (1998), 243–271 | MR | Zbl
[9] V. Gutlyanskiĭ, V. Ryazanov, U. Srebro, E. Yakubov, The Beltrami equation. A geometric approach, Dev. Math., 26, Springer, New York, 2012, xiv+301 pp. | DOI | MR | Zbl
[10] O. Martio, V. Ryazanov, U. Srebro, E. Yakubov, Moduli in modern mapping theory, Springer Monogr. Math., Springer, New York, 2009, xii+367 pp. | DOI | MR | Zbl
[11] O. Martio, S. Rickman, J. Väisälä, Definitions for quasiregular mappings, Ann. Acad. Sci. Fenn. Ser. A I, 448, Suomalainen Tiedeakatemia, Helsinki, 1969, 40 pp. | DOI | MR | Zbl
[12] O. Martio, S. Rickman, J. Väisälä, Distortion and singularities of quasiregular mappings, Ann. Acad. Sci. Fenn. Ser. A I, 465, Suomalainen Tiedeakatemia, Helsinki, 1970, 13 pp. | MR | Zbl
[13] Yu. G. Reshetnyak, Space mappings with bounded distortion, Transl. Math. Monogr., 73, Amer. Math. Soc., Providence, RI, 1989, xvi+362 pp. | MR | MR | Zbl | Zbl
[14] S. Rickman, Quasiregular mappings, Ergeb. Math. Grenzgeb. (3), 26, Springer-Verlag, Berlin, 1993, x+213 pp. | DOI | MR | Zbl
[15] M. Vuorinen, Conformal geometry and quasiregular mappings, Lecture Notes in Math., 1319, Springer-Verlag, Berlin, 1988, xx+209 pp. | DOI | MR | Zbl
[16] D. A. Kovtonyuk, V. I. Ryazanov, “Prime ends and Orlicz–Sobolev classes”, St. Petersburg Math. J., 27:5 (2016), 765–788 | DOI | MR | Zbl
[17] V. Gutlyanskii, V. Ryazanov, E. Yakubov, “The Beltrami equations and prime ends”, Ukr. matem. visn., 12:1 (2015), 27–66 | MR | Zbl
[18] D. A. Kovtonyuk, V. I. Ryazanov, R. R. Salimov, E. A. Sevost'yanov, “Toward the theory of Orlicz–Sobolev classes”, St. Petersburg Math. J., 25:6 (2014), 929–963 | DOI | MR | Zbl
[19] D. A. Kovtonyuk, R. R. Salimov, E. A. Sevostyanov, K teorii otobrazhenii klassov Soboleva i Orlicha–Soboleva, Naukova dumka, Kiev, 2013, 303 pp.
[20] E. A. Sevostyanov, “Equicontinuity of homeomorphisms with unbounded characteristic”, Siberian Adv. Math., 23:2 (2013), 106–122 | DOI | MR | Zbl
[21] E. S. Afanasieva, V. I. Ryazanov, “On mappings in the Orlicz–Sobolev classes on Riemannian manifolds”, J. Math. Sci. (N.Y.), 181:1 (2012), 1–17 | DOI | MR | Zbl
[22] E. S. Afanaseva, “O granichnom povedenii koltsevykh $Q$-gomeomorfizmov na rimanovykh mnogoobraziyakh”, Dopov. NAN Ukraini, 2011, no. 8, 7–12 | MR | Zbl
[23] E. S. Afanas'eva, “On the boundary behavior of one class of mappings in metric spaces”, Ukrainian Math. J., 66:1 (2014), 16–29 | DOI | MR | Zbl
[24] E. S. Afanas'eva, “Generalized quasi-isometries on smooth Riemannian manifolds”, Math. Notes, 102:1 (2017), 12–21 | DOI | DOI | MR | Zbl
[25] E. S. Afanas'eva, “Boundary behavior of ring $Q$-homeomorphisms on Riemannian manifolds”, Ukrainian Math. J., 63:10 (2012), 1479–1493 | DOI | MR | Zbl
[26] D. P. Il'yutko, E. A. Sevost'yanov, “Open discrete mappings with unbounded coefficient of quasi-conformality on Riemannian manifolds”, Sb. Math., 207:4 (2016), 537–580 | DOI | DOI | MR | Zbl
[27] R. Näkki, “Prime ends and quasiconformal mappings”, J. Analyse Math., 35 (1979), 13–40 | DOI | MR | Zbl
[28] B. Fuglede, “Extremal length and functional completion”, Acta Math., 98 (1957), 171–219 | DOI | MR | Zbl
[29] G. T. Whyburn, Analytic topology, Amer. Math. Soc. Colloq. Publ., 28, Amer. Math. Soc., New York, 1942, x+278 pp. | MR | Zbl
[30] D. P. Ilyutko, E. A. Sevost'yanov, “Boundary behaviour of open discrete mappings on Riemannian manifolds”, Sb. Math., 209:5 (2018), 605–651 | DOI | DOI | MR | Zbl
[31] K. Kuratowski, Topology, v. II, New ed., rev. and augm., Academic Press, New York–London; Państwowe Wydawnictwo Naukowe Polish Scientific Publishers, Warsaw, 1968, xiv+608 pp. | MR | MR
[32] J. Väisälä, Lectures on $n$-dimensional quasiconformal mappings, Lecture Notes in Math., 229, Springer–Verlag, Berlin, 1971, xiv+144 pp. | DOI | MR | Zbl
[33] E. A. Sevost'yanov, “Boundary behavior and equicontinuity for families of mappings in terms of prime ends”, St. Petersburg Math. J., 30:6 (2019), 973–1005 | DOI | MR | Zbl
[34] T. Adamowicz, N. Shanmugalingam, “Non-conformal Loewner type estimates for modulus of curve families”, Ann. Acad. Sci. Fenn. Math., 35:2 (2010), 609–626 | DOI | MR | Zbl
[35] J. M. Lee, Riemannian manifolds. An introduction to curvature, Grad. Texts in Math., 176, Springer-Verlag, New York, 1997, xvi+224 pp. | DOI | MR | Zbl
[36] M. Vuorinen, Exceptional sets and boundary behavior of quasiregular mappings in $n$-space, Ann. Acad. Sci. Fenn. Ser. A I Math. Dissertationes, 11, Helsinki, Suomalainen tiedeakatemia, 1976, 44 pp. | MR | Zbl
[37] W. P. Ziemer, “Extremal length and conformal capacity”, Trans. Amer. Math. Soc., 126:3 (1967), 460–473 | DOI | MR | Zbl
[38] W. P. Ziemer, “Extremal length and $p$-capacity”, Michigan Math. J., 16 (1969), 43–51 | DOI | MR | Zbl
[39] V. A. Shlyk, “The equality between $p$-capacity and $p$-modulus”, Siberian Math. J., 34:6 (1993), 1196–1200 | DOI | MR | Zbl
[40] D. Kovtonyuk, V. Ryazanov, “New modulus estimates in Orlicz–Sobolev classes”, Ann. Univ. Buchar. Math. Ser., 5(LXIII):1 (2014), 131–135 | MR | Zbl
[41] J. Väisälä, Discrete open mappings on manifolds, Ann. Acad. Sci. Fenn. Ser. A I, 392, Suomalainen Tiedeakatemia, Helsinki, 1966, 10 pp. | MR | Zbl
[42] E. A. Poleckiĭ, “The modulus method for nonhomeomorphic quasiconformal mappings”, Math. USSR-Sb., 12:2 (1970), 260–270 | DOI | MR | Zbl
[43] E. S. Smolovaya, “Boundary behavior of ring $Q$-homeomorphisms in metric spaces”, Ukrainian Math. J., 62:5 (2010), 785–793 | DOI | MR | Zbl
[44] E. A. Sevost'yanov, E. A. Petrov, “On the equicontinuity of homeomorphisms of Orlicz and Orlicz–Sobolev classes in the closure of a domain”, Ukrainian Math. J., 69:11 (2018), 1821–1834 | DOI | MR | Zbl
[45] E. A. Sevostyanov, S. A. Skvortsov, “O ravnostepennoi nepreryvnosti obobschennykh kvaziizometrii na rimanovykh mnogoobraziyakh”, Mat. Stud., 45:2 (2016), 159–169 | DOI | MR | Zbl