The wave model of a~metric space with measure and an application
Sbornik. Mathematics, Tome 211 (2020) no. 4, pp. 521-538

Voir la notice de l'article provenant de la source Math-Net.Ru

Let $(\Omega,d)$ be a complete metric space and let $\mu$ be a Borel measure on $\Omega$. Under certain fairly general assumptions about the metric and the measure, we use lattice theory to construct an isometric copy $(\widetilde\Omega,\widetilde d)$ of the space $(\Omega,d)$, which is called its wave model. The construction is motivated by applications to inverse problems of mathematical physics. We show how the wave model solves the problem of reconstructing a Riemannian manifold with boundary from its spectral data. Bibliography: 13 titles.
Keywords: metric space, measure, isotony, wave model, reconstruction of a Riemannian manifold.
@article{SM_2020_211_4_a2,
     author = {M. I. Belishev and S. A. Simonov},
     title = {The wave model of a~metric space with measure and an application},
     journal = {Sbornik. Mathematics},
     pages = {521--538},
     publisher = {mathdoc},
     volume = {211},
     number = {4},
     year = {2020},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2020_211_4_a2/}
}
TY  - JOUR
AU  - M. I. Belishev
AU  - S. A. Simonov
TI  - The wave model of a~metric space with measure and an application
JO  - Sbornik. Mathematics
PY  - 2020
SP  - 521
EP  - 538
VL  - 211
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SM_2020_211_4_a2/
LA  - en
ID  - SM_2020_211_4_a2
ER  - 
%0 Journal Article
%A M. I. Belishev
%A S. A. Simonov
%T The wave model of a~metric space with measure and an application
%J Sbornik. Mathematics
%D 2020
%P 521-538
%V 211
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SM_2020_211_4_a2/
%G en
%F SM_2020_211_4_a2
M. I. Belishev; S. A. Simonov. The wave model of a~metric space with measure and an application. Sbornik. Mathematics, Tome 211 (2020) no. 4, pp. 521-538. http://geodesic.mathdoc.fr/item/SM_2020_211_4_a2/