The wave model of a metric space with measure and an application
Sbornik. Mathematics, Tome 211 (2020) no. 4, pp. 521-538 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Let $(\Omega,d)$ be a complete metric space and let $\mu$ be a Borel measure on $\Omega$. Under certain fairly general assumptions about the metric and the measure, we use lattice theory to construct an isometric copy $(\widetilde\Omega,\widetilde d)$ of the space $(\Omega,d)$, which is called its wave model. The construction is motivated by applications to inverse problems of mathematical physics. We show how the wave model solves the problem of reconstructing a Riemannian manifold with boundary from its spectral data. Bibliography: 13 titles.
Keywords: metric space, measure, isotony, wave model, reconstruction of a Riemannian manifold.
@article{SM_2020_211_4_a2,
     author = {M. I. Belishev and S. A. Simonov},
     title = {The wave model of a~metric space with measure and an application},
     journal = {Sbornik. Mathematics},
     pages = {521--538},
     year = {2020},
     volume = {211},
     number = {4},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2020_211_4_a2/}
}
TY  - JOUR
AU  - M. I. Belishev
AU  - S. A. Simonov
TI  - The wave model of a metric space with measure and an application
JO  - Sbornik. Mathematics
PY  - 2020
SP  - 521
EP  - 538
VL  - 211
IS  - 4
UR  - http://geodesic.mathdoc.fr/item/SM_2020_211_4_a2/
LA  - en
ID  - SM_2020_211_4_a2
ER  - 
%0 Journal Article
%A M. I. Belishev
%A S. A. Simonov
%T The wave model of a metric space with measure and an application
%J Sbornik. Mathematics
%D 2020
%P 521-538
%V 211
%N 4
%U http://geodesic.mathdoc.fr/item/SM_2020_211_4_a2/
%G en
%F SM_2020_211_4_a2
M. I. Belishev; S. A. Simonov. The wave model of a metric space with measure and an application. Sbornik. Mathematics, Tome 211 (2020) no. 4, pp. 521-538. http://geodesic.mathdoc.fr/item/SM_2020_211_4_a2/

[1] M. I. Belishev, “A unitary invariant of a semi-bounded operator in reconstruction of manifolds”, J. Operator Theory, 69:2 (2013), 299–326 | DOI | MR | Zbl

[2] M. I. Belishev, S. A. Simonov, “Wave model of the Sturm–Liouville operator on the half-line”, St. Petersburg Math. J., 29:2 (2018), 227–248 | DOI | MR | Zbl

[3] S. A. Simonov, “The wave model of the Sturm–Liouville operator on an interval”, J. Math. Sci. (N.Y.), 243:5 (2019), 783–807 | DOI | MR

[4] M. I. Belishev, S. A. Simonov, “A wave model of metric spaces”, Funct. Anal. Appl., 53:2 (2019), 79–85 | DOI | DOI | MR | Zbl

[5] M. I. Belishev, A. P. Kachalov, “Boundary control and quasiphotons in the problem of reconstruction of a Riemannian manifold via dynamical data”, J. Math. Sci. (N.Y.), 79:4 (1996), 1172–1190 | DOI | MR | Zbl

[6] M. I. Belishev, Ya. V. Kurylev, “To the reconstruction of a Riemannian manifold via its spectral data (BC-method)”, Comm. Partial Differential Equations, 17:5-6 (1992), 767–804 | DOI | MR | Zbl

[7] M. I. Belishev, “Boundary control and tomography of Riemannian manifolds (the BC-method)”, Russian Math. Surveys, 72:4 (2017), 581–644 | DOI | DOI | MR | Zbl

[8] D. Burago, Yu. Burago, S. Ivanov, A course in metric geometry, Grad. Stud. Math., 33, Amer. Math. Soc., Providence, RI, 2001, xiv+415 pp. | DOI | MR | Zbl

[9] G. Birkhoff, Lattice theory, Amer. Math. Soc. Colloq. Publ., 25, 3rd ed., Amer. Math. Soc., Providence, RI, 1967, vi+418 pp. | MR | MR | Zbl | Zbl

[10] A. N. Kolmogorov, S. V. Fomin, Elements of the theory of functions and functional analysis, v. I, II, Graylock Press, Albany, NY, 1957, 1961, ix+129 pp., ix+128 pp. | MR | MR | MR | Zbl | Zbl

[11] V. I. Bogachev, Measure theory, v. I, II, Springer-Verlag, Berlin, 2007, xviii+500 pp., xiv+575 pp. | DOI | MR | Zbl

[12] M. I. Belishev, M. N. Demchenko, “Dynamical system with boundary control associated with a symmetric semibounded operator”, J. Math. Sci. (N.Y.), 194:1 (2013), 8–20 | DOI | MR | Zbl

[13] M. Belishev, “Geometrization of rings as a method for solving inverse problems”, Sobolev spaces in mathematics. III, Int. Math. Ser. (N. Y.), 10, Springer, New York, 2009, 5–24 | DOI | MR | Zbl