Mots-clés : flux
@article{SM_2020_211_4_a1,
author = {E. S. Baranovskii},
title = {Optimal boundary control of nonlinear-viscous fluid flows},
journal = {Sbornik. Mathematics},
pages = {505--520},
year = {2020},
volume = {211},
number = {4},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SM_2020_211_4_a1/}
}
E. S. Baranovskii. Optimal boundary control of nonlinear-viscous fluid flows. Sbornik. Mathematics, Tome 211 (2020) no. 4, pp. 505-520. http://geodesic.mathdoc.fr/item/SM_2020_211_4_a1/
[1] V. G. Litvinov, Dvizhenie nelineino-vyazkoi zhidkosti, Nauka, M., 1982, 375 pp. | MR | Zbl
[2] K. R. Rajagopal, “On some unresolved issues in non-linear fluid dynamics”, Russian Math. Surveys, 58:2 (2003), 319–330 | DOI | DOI | MR | Zbl
[3] J.-L. Lions, Quelques méthodes de résolution des problèmes aux limites non linéaires, Dunod, Paris; Gauthier-Villars, Paris, 1969, xx+554 pp. | MR | MR | Zbl | Zbl
[4] R. Temam, Navier–Stokes equations. Theory and numerical analysis, Stud. Math. Appl., 2, Rev. ed., North-Holland Publishing Co., Amsterdam–New York, 1979, x+519 pp. | MR | MR | Zbl | Zbl
[5] A. V. Fursikov, “Control problems and theorems concerning the unique solvability of a mixed boundary value problem for the three-dimensional Navier–Stokes and Euler equations”, Math. USSR-Sb., 43:2 (1982), 251–273 | DOI | MR | Zbl
[6] F. Abergel, R. Temam, “On some control problems in fluid mechanics”, Theor. Comput. Fluid Dyn., 1:6 (1990), 303–325 | DOI | Zbl
[7] A. V. Fursikov, Optimal control of distributed systems. Theory and applications, Transl. Math. Monogr., 187, Amer. Math. Soc., Providence, RI, 2000, xiv+305 pp. | MR | Zbl | Zbl
[8] A. V. Fursikov, Yu. S. Èmanuilov, “Exact controllability of the Navier–Stokes and Boussinesq equations”, Russian Math. Surveys, 54:3 (1999), 565–618 | DOI | DOI | MR | Zbl
[9] T. Bewley, R. Temam, M. Ziane, “Existence and uniqueness of optimal control to the Navier–Stokes equations”, C. R. Acad. Sci. Paris Sér. I Math., 330:11 (2000), 1007–1011 | DOI | MR | Zbl
[10] Hanbing Liu, “Optimal control problems with state constraint governed by Navier–Stokes equations”, Nonlinear Anal., 73:12 (2010), 3924–3939 | DOI | MR | Zbl
[11] E. S. Baranovskii, “Optimal control for steady flows of the Jeffreys fluids with slip boundary condition”, J. Appl. Industr. Math., 8:2 (2014), 168–176 | DOI | MR | Zbl
[12] E. S. Baranovskii, M. A. Artemov, “Existence of optimal control for a nonlinear-viscous fluid model”, Int. J. Differ. Equ., 2016 (2016), 9428128, 6 pp. | DOI | MR | Zbl
[13] M. A. Artemov, A. V. Skobaneva, “Ob optimalnom upravlenii v modeli zhestko-vyazko-plasticheskoi sredy s granichnymi usloviyami Dirikhle”, Sib. elektron. matem. izv., 14 (2017), 1463–1471 | DOI | MR | Zbl
[14] T. Slawig, “Distributed control for a class of non-Newtonian fluids”, J. Differential Equations, 219:1 (2005), 116–143 | DOI | MR | Zbl
[15] D. Wachsmuth, T. Roubíček, “Optimal control of planar flow of incompressible non-Newtonian fluids”, Z. Anal. Anwend., 29:3 (2010), 351–376 | DOI | MR | Zbl
[16] M. V. Korobkov, K. Pileckas, V. V. Pukhnachov, R. Russo, “The flux problem for the Navier–Stokes equations”, Russian Math. Surveys, 69:6 (2014), 1065–1122 | DOI | DOI | MR | Zbl
[17] V. V. Ragulin, “K zadache o protekanii vyazkoi zhidkosti skvoz ogranichennuyu oblast pri zadannom perepade davleniya ili napora”, Dinamika sploshnoi sredy, 27, In-t gidrodinamiki SO AN SSSR, Novosibirsk, 1976, 78–92 | MR
[18] A. V. Kazhikhov, V. V. Ragulin, “Flow problem for the equations of an ideal fluid”, J. Soviet Math., 21:5 (1983), 700–710 | DOI | MR | Zbl
[19] C. Conca, F. Murat, O. Pironneau, “The Stokes and Navier–Stokes equations with boundary conditions involving the pressure”, Japan. J. Math. (N.S.), 20:2 (1994), 279–318 | DOI | MR | Zbl
[20] J. Nečas, Direct methods in the theory of elliptic equations, Transl. from the French, Springer Monogr. Math., Springer, Heidelberg, 2012, xvi+372 pp. | DOI | MR | Zbl
[21] M. Renardy, R. C. Rogers, An introduction to partial differential equations, Texts Appl. Math., 13, 2nd ed., Springer-Verlag, New York, 2004, xiv+434 pp. | DOI | MR | Zbl
[22] I. V. Skrypnik, Methods for analysis of nonlinear elliptic boundary value problems, Transl. Math. Monogr., 139, Amer. Math. Soc., Providence, RI, 1994, xii+348 pp. | MR | MR | Zbl | Zbl
[23] E. Zeidler, Nonlinear functional analysis and its applications, Transl. from the German, v. III, Variational methods and optimization, Springer-Verlag, New York, 1985, xxii+662 pp. | DOI | MR | Zbl