Optimal boundary control of nonlinear-viscous fluid flows
    
    
  
  
  
      
      
      
        
Sbornik. Mathematics, Tome 211 (2020) no. 4, pp. 505-520
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Math-Net.Ru
            
              			The optimal control problem for a stationary model of a nonlinear-viscous incompressible fluid flowing through a bounded domain is considered under the wall slip condition. As a control parameter, the dynamic pressure at the in-flow and out-flow parts of the boundary is used. Using methods of the theory of pseudomonotone mappings, the existence of a weak solution (a velocity–dynamic pressure pair) minimizing a given cost functional is proved. The behaviour of solutions and optimal values of the cost functional are studied when the set of admissible controls varies. In particular, it is shown that the marginal function of this control system is lower semicontinuous. 
Bibliography: 23 titles.
			
            
            
            
          
        
      
                  
                    
                    
                    
                        
Keywords: 
optimal control, boundary control, non-Newtonian fluids, nonlinear-viscous media.
Mots-clés : flux
                    
                  
                
                
                Mots-clés : flux
@article{SM_2020_211_4_a1,
     author = {E. S. Baranovskii},
     title = {Optimal boundary control of nonlinear-viscous fluid flows},
     journal = {Sbornik. Mathematics},
     pages = {505--520},
     publisher = {mathdoc},
     volume = {211},
     number = {4},
     year = {2020},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2020_211_4_a1/}
}
                      
                      
                    E. S. Baranovskii. Optimal boundary control of nonlinear-viscous fluid flows. Sbornik. Mathematics, Tome 211 (2020) no. 4, pp. 505-520. http://geodesic.mathdoc.fr/item/SM_2020_211_4_a1/
