Optimal boundary control of nonlinear-viscous fluid flows
Sbornik. Mathematics, Tome 211 (2020) no. 4, pp. 505-520

Voir la notice de l'article provenant de la source Math-Net.Ru

The optimal control problem for a stationary model of a nonlinear-viscous incompressible fluid flowing through a bounded domain is considered under the wall slip condition. As a control parameter, the dynamic pressure at the in-flow and out-flow parts of the boundary is used. Using methods of the theory of pseudomonotone mappings, the existence of a weak solution (a velocity–dynamic pressure pair) minimizing a given cost functional is proved. The behaviour of solutions and optimal values of the cost functional are studied when the set of admissible controls varies. In particular, it is shown that the marginal function of this control system is lower semicontinuous. Bibliography: 23 titles.
Keywords: optimal control, boundary control, non-Newtonian fluids, nonlinear-viscous media.
Mots-clés : flux
@article{SM_2020_211_4_a1,
     author = {E. S. Baranovskii},
     title = {Optimal boundary control of nonlinear-viscous fluid flows},
     journal = {Sbornik. Mathematics},
     pages = {505--520},
     publisher = {mathdoc},
     volume = {211},
     number = {4},
     year = {2020},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2020_211_4_a1/}
}
TY  - JOUR
AU  - E. S. Baranovskii
TI  - Optimal boundary control of nonlinear-viscous fluid flows
JO  - Sbornik. Mathematics
PY  - 2020
SP  - 505
EP  - 520
VL  - 211
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SM_2020_211_4_a1/
LA  - en
ID  - SM_2020_211_4_a1
ER  - 
%0 Journal Article
%A E. S. Baranovskii
%T Optimal boundary control of nonlinear-viscous fluid flows
%J Sbornik. Mathematics
%D 2020
%P 505-520
%V 211
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SM_2020_211_4_a1/
%G en
%F SM_2020_211_4_a1
E. S. Baranovskii. Optimal boundary control of nonlinear-viscous fluid flows. Sbornik. Mathematics, Tome 211 (2020) no. 4, pp. 505-520. http://geodesic.mathdoc.fr/item/SM_2020_211_4_a1/