Optimal boundary control of nonlinear-viscous fluid flows
Sbornik. Mathematics, Tome 211 (2020) no. 4, pp. 505-520 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The optimal control problem for a stationary model of a nonlinear-viscous incompressible fluid flowing through a bounded domain is considered under the wall slip condition. As a control parameter, the dynamic pressure at the in-flow and out-flow parts of the boundary is used. Using methods of the theory of pseudomonotone mappings, the existence of a weak solution (a velocity–dynamic pressure pair) minimizing a given cost functional is proved. The behaviour of solutions and optimal values of the cost functional are studied when the set of admissible controls varies. In particular, it is shown that the marginal function of this control system is lower semicontinuous. Bibliography: 23 titles.
Keywords: optimal control, boundary control, non-Newtonian fluids, nonlinear-viscous media.
Mots-clés : flux
@article{SM_2020_211_4_a1,
     author = {E. S. Baranovskii},
     title = {Optimal boundary control of nonlinear-viscous fluid flows},
     journal = {Sbornik. Mathematics},
     pages = {505--520},
     year = {2020},
     volume = {211},
     number = {4},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2020_211_4_a1/}
}
TY  - JOUR
AU  - E. S. Baranovskii
TI  - Optimal boundary control of nonlinear-viscous fluid flows
JO  - Sbornik. Mathematics
PY  - 2020
SP  - 505
EP  - 520
VL  - 211
IS  - 4
UR  - http://geodesic.mathdoc.fr/item/SM_2020_211_4_a1/
LA  - en
ID  - SM_2020_211_4_a1
ER  - 
%0 Journal Article
%A E. S. Baranovskii
%T Optimal boundary control of nonlinear-viscous fluid flows
%J Sbornik. Mathematics
%D 2020
%P 505-520
%V 211
%N 4
%U http://geodesic.mathdoc.fr/item/SM_2020_211_4_a1/
%G en
%F SM_2020_211_4_a1
E. S. Baranovskii. Optimal boundary control of nonlinear-viscous fluid flows. Sbornik. Mathematics, Tome 211 (2020) no. 4, pp. 505-520. http://geodesic.mathdoc.fr/item/SM_2020_211_4_a1/

[1] V. G. Litvinov, Dvizhenie nelineino-vyazkoi zhidkosti, Nauka, M., 1982, 375 pp. | MR | Zbl

[2] K. R. Rajagopal, “On some unresolved issues in non-linear fluid dynamics”, Russian Math. Surveys, 58:2 (2003), 319–330 | DOI | DOI | MR | Zbl

[3] J.-L. Lions, Quelques méthodes de résolution des problèmes aux limites non linéaires, Dunod, Paris; Gauthier-Villars, Paris, 1969, xx+554 pp. | MR | MR | Zbl | Zbl

[4] R. Temam, Navier–Stokes equations. Theory and numerical analysis, Stud. Math. Appl., 2, Rev. ed., North-Holland Publishing Co., Amsterdam–New York, 1979, x+519 pp. | MR | MR | Zbl | Zbl

[5] A. V. Fursikov, “Control problems and theorems concerning the unique solvability of a mixed boundary value problem for the three-dimensional Navier–Stokes and Euler equations”, Math. USSR-Sb., 43:2 (1982), 251–273 | DOI | MR | Zbl

[6] F. Abergel, R. Temam, “On some control problems in fluid mechanics”, Theor. Comput. Fluid Dyn., 1:6 (1990), 303–325 | DOI | Zbl

[7] A. V. Fursikov, Optimal control of distributed systems. Theory and applications, Transl. Math. Monogr., 187, Amer. Math. Soc., Providence, RI, 2000, xiv+305 pp. | MR | Zbl | Zbl

[8] A. V. Fursikov, Yu. S. Èmanuilov, “Exact controllability of the Navier–Stokes and Boussinesq equations”, Russian Math. Surveys, 54:3 (1999), 565–618 | DOI | DOI | MR | Zbl

[9] T. Bewley, R. Temam, M. Ziane, “Existence and uniqueness of optimal control to the Navier–Stokes equations”, C. R. Acad. Sci. Paris Sér. I Math., 330:11 (2000), 1007–1011 | DOI | MR | Zbl

[10] Hanbing Liu, “Optimal control problems with state constraint governed by Navier–Stokes equations”, Nonlinear Anal., 73:12 (2010), 3924–3939 | DOI | MR | Zbl

[11] E. S. Baranovskii, “Optimal control for steady flows of the Jeffreys fluids with slip boundary condition”, J. Appl. Industr. Math., 8:2 (2014), 168–176 | DOI | MR | Zbl

[12] E. S. Baranovskii, M. A. Artemov, “Existence of optimal control for a nonlinear-viscous fluid model”, Int. J. Differ. Equ., 2016 (2016), 9428128, 6 pp. | DOI | MR | Zbl

[13] M. A. Artemov, A. V. Skobaneva, “Ob optimalnom upravlenii v modeli zhestko-vyazko-plasticheskoi sredy s granichnymi usloviyami Dirikhle”, Sib. elektron. matem. izv., 14 (2017), 1463–1471 | DOI | MR | Zbl

[14] T. Slawig, “Distributed control for a class of non-Newtonian fluids”, J. Differential Equations, 219:1 (2005), 116–143 | DOI | MR | Zbl

[15] D. Wachsmuth, T. Roubíček, “Optimal control of planar flow of incompressible non-Newtonian fluids”, Z. Anal. Anwend., 29:3 (2010), 351–376 | DOI | MR | Zbl

[16] M. V. Korobkov, K. Pileckas, V. V. Pukhnachov, R. Russo, “The flux problem for the Navier–Stokes equations”, Russian Math. Surveys, 69:6 (2014), 1065–1122 | DOI | DOI | MR | Zbl

[17] V. V. Ragulin, “K zadache o protekanii vyazkoi zhidkosti skvoz ogranichennuyu oblast pri zadannom perepade davleniya ili napora”, Dinamika sploshnoi sredy, 27, In-t gidrodinamiki SO AN SSSR, Novosibirsk, 1976, 78–92 | MR

[18] A. V. Kazhikhov, V. V. Ragulin, “Flow problem for the equations of an ideal fluid”, J. Soviet Math., 21:5 (1983), 700–710 | DOI | MR | Zbl

[19] C. Conca, F. Murat, O. Pironneau, “The Stokes and Navier–Stokes equations with boundary conditions involving the pressure”, Japan. J. Math. (N.S.), 20:2 (1994), 279–318 | DOI | MR | Zbl

[20] J. Nečas, Direct methods in the theory of elliptic equations, Transl. from the French, Springer Monogr. Math., Springer, Heidelberg, 2012, xvi+372 pp. | DOI | MR | Zbl

[21] M. Renardy, R. C. Rogers, An introduction to partial differential equations, Texts Appl. Math., 13, 2nd ed., Springer-Verlag, New York, 2004, xiv+434 pp. | DOI | MR | Zbl

[22] I. V. Skrypnik, Methods for analysis of nonlinear elliptic boundary value problems, Transl. Math. Monogr., 139, Amer. Math. Soc., Providence, RI, 1994, xii+348 pp. | MR | MR | Zbl | Zbl

[23] E. Zeidler, Nonlinear functional analysis and its applications, Transl. from the German, v. III, Variational methods and optimization, Springer-Verlag, New York, 1985, xxii+662 pp. | DOI | MR | Zbl