The gradient projection algorithm for a~proximally smooth set and a~function with Lipschitz continuous gradient
Sbornik. Mathematics, Tome 211 (2020) no. 4, pp. 481-504

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider the minimization problem for a nonconvex function with Lipschitz continuous gradient on a proximally smooth (possibly nonconvex) subset of a finite-dimensional Euclidean space. We introduce the error bound condition with exponent $\alpha\in(0,1]$ for the gradient mapping. Under this condition, it is shown that the standard gradient projection algorithm converges to a solution of the problem linearly or sublinearly, depending on the value of the exponent $\alpha$. This paper is theoretical. Bibliography: 23 titles.
Keywords: gradient mapping, error bound condition, proximal smoothness, nonconvex extremal problem.
Mots-clés : gradient projection algorithm
@article{SM_2020_211_4_a0,
     author = {M. V. Balashov},
     title = {The gradient projection algorithm for a~proximally smooth set and a~function with {Lipschitz} continuous gradient},
     journal = {Sbornik. Mathematics},
     pages = {481--504},
     publisher = {mathdoc},
     volume = {211},
     number = {4},
     year = {2020},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2020_211_4_a0/}
}
TY  - JOUR
AU  - M. V. Balashov
TI  - The gradient projection algorithm for a~proximally smooth set and a~function with Lipschitz continuous gradient
JO  - Sbornik. Mathematics
PY  - 2020
SP  - 481
EP  - 504
VL  - 211
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SM_2020_211_4_a0/
LA  - en
ID  - SM_2020_211_4_a0
ER  - 
%0 Journal Article
%A M. V. Balashov
%T The gradient projection algorithm for a~proximally smooth set and a~function with Lipschitz continuous gradient
%J Sbornik. Mathematics
%D 2020
%P 481-504
%V 211
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SM_2020_211_4_a0/
%G en
%F SM_2020_211_4_a0
M. V. Balashov. The gradient projection algorithm for a~proximally smooth set and a~function with Lipschitz continuous gradient. Sbornik. Mathematics, Tome 211 (2020) no. 4, pp. 481-504. http://geodesic.mathdoc.fr/item/SM_2020_211_4_a0/