@article{SM_2020_211_3_a5,
author = {{\CYRS}. A. Shramov},
title = {Birational automorphisms of {Severi-Brauer} surfaces},
journal = {Sbornik. Mathematics},
pages = {466--480},
year = {2020},
volume = {211},
number = {3},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SM_2020_211_3_a5/}
}
С. A. Shramov. Birational automorphisms of Severi-Brauer surfaces. Sbornik. Mathematics, Tome 211 (2020) no. 3, pp. 466-480. http://geodesic.mathdoc.fr/item/SM_2020_211_3_a5/
[1] M. Artin, “Brauer–Severi varieties”, Brauer groups in ring theory and algebraic geometry (Wilrijk, 1981), Lecture Notes in Math., 917, Springer, Berlin–New York, 1982, 194–210 | DOI | MR | Zbl
[2] H. F. Blichfeldt, Finite collineation groups, Univ. Chicago Press, Chicago, IL, 1917, xi+194 pp.
[3] A. Borel, “Sous-groupes commutatifs et torsion des groupes de Lie compacts connexes”, Tôhoku Math. J. (2), 13:2 (1961), 216–240 | DOI | MR | Zbl
[4] R. W. Carter, “Conjugacy classes in the Weyl group”, Compositio Math., 25 (1972), 1–59 | MR | Zbl
[5] F. Châtelet, “Variations sur un thème de H. Poincaré”, Ann. Sci. École Norm. Sup. (3), 61 (1944), 249–300 | DOI | MR | Zbl
[6] P. Corn, “Del Pezzo surfaces of degree $6$”, Math. Res. Lett., 12:1 (2005), 75–84 | DOI | MR | Zbl
[7] I. V. Dolgachev, V. A. Iskovskikh, “Finite subgroups of the plane Cremona group”, Algebra, arithmetic, and geometry. In honor of Yu. I. Manin, v. I, Progr. Math., 269, Birkhäuser Boston, Boston, MA, 2009, 443–548 | DOI | MR | Zbl
[8] I. V. Dolgachev, Classical algebraic geometry. A modern view, Cambridge Univ. Press, Cambridge, 2012, xii+639 pp. | DOI | MR | Zbl
[9] M. Garcia-Armas, “Finite group actions on curves of genus zero”, J. Algebra, 394 (2013), 173–181 | DOI | MR | Zbl
[10] M. H. Gizatullin, “Defining relations for the Cremona group of the plane”, Math. USSR-Izv., 21:2 (1983), 211–268 | DOI | MR | Zbl
[11] S. Gorchinskiy, C. Shramov, Unramified Brauer group and its applications, Transl. Math. Monogr., 246, Amer. Math. Soc., Providence, RI, 2018, xvii+179 pp. | DOI | MR | Zbl
[12] V. A. Iskovskih, “Minimal models of rational surfaces over arbitrary fields”, Math. USSR-Izv., 14:1 (1980), 17–39 | DOI | MR | Zbl
[13] V. A. Iskovskikh, “A simple proof of a theorem of Gizatullin”, Proc. Steklov Inst. Math., 183 (1991), 127–133 | MR | Zbl
[14] V. A. Iskovskikh, “Factorization of birational maps of rational surfaces from the viewpoint of Mori theory”, Russian Math. Surveys, 51:4 (1996), 585–652 | DOI | DOI | MR | Zbl
[15] V. A. Iskovskikh, F. K. Kabdykairov, S. L. Tregub, “Relations in the two-dimensional Cremona group over a perfect field”, Russian Acad. Sci. Izv. Math., 42:3 (1994), 427–478 | DOI | MR | Zbl
[16] V. A. Iskovskikh, S. L. Tregub, “On birational automorphisms of rational surfaces”, Math. USSR-Izv., 38:2 (1992), 251–275 | DOI | MR | Zbl
[17] J. Kollár, Rational curves on algebraic varieties, Ergeb. Math. Grenzgeb. (3), 32, Springer-Verlag, Berlin, 1996, viii+320 pp. | DOI | MR | Zbl
[18] J. Kollár, Severi–Brauer varieties; a geometric treatment, arXiv: 1606.04368
[19] Yu. I. Manin, M. Hazewinkel, Cubic forms: algebra, geometry, arithmetic, North-Holland Math. Library, 4, North-Holland Publishing Co., Amsterdam–London; American Elsevier Publishing Co., New York, 1974, vii+292 pp. | MR | MR | Zbl | Zbl
[20] J.-P. Serre, “A Minkowski-style bound for the orders of the finite subgroups of the Cremona group of rank 2 over an arbitrary field”, Mosc. Math. J., 9:1 (2009), 183–198 | MR | Zbl
[21] C. Shramov, V. Vologodsky, Automorphisms of pointless surfaces, arXiv: 1807.06477
[22] A. Trepalin, “Quotients of cubic surfaces”, Eur. J. Math., 2:1 (2016), 333–359 | DOI | MR | Zbl
[23] F. W. Weinstein, On birational automorphisms of Severi–Brauer surfaces, Prepr. Rep. Math. Univ. Stockholm No. 1, 1989, 14 pp.
[24] F. W. Weinstein, On birational automorphisms of Severi–Brauer surfaces, arXiv: 1907.08115
[25] E. Yasinsky, “The Jordan constant for Cremona group of rank 2”, Bull. Korean Math. Soc., 54:5 (2017), 1859–1871 | DOI | MR | Zbl