Birational automorphisms of Severi-Brauer surfaces
    
    
  
  
  
      
      
      
        
Sbornik. Mathematics, Tome 211 (2020) no. 3, pp. 466-480
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Math-Net.Ru
            
              			We prove that a finite group acting by birational automorphisms of a nontrivial Severi-Brauer surface over a field of characteristic zero contains a normal abelian subgroup of index at most $3$. Also, we find an explicit bound for the orders of such finite groups in the case when the base field contains all roots of $1$. 
Bibliography: 25 titles.
			
            
            
            
          
        
      
                  
                    
                    
                    
                        
Keywords: 
Severi-Brauer surface, group of birational automorphisms.
                    
                    
                    
                  
                
                
                @article{SM_2020_211_3_a5,
     author = {{\CYRS}. A. Shramov},
     title = {Birational automorphisms of {Severi-Brauer} surfaces},
     journal = {Sbornik. Mathematics},
     pages = {466--480},
     publisher = {mathdoc},
     volume = {211},
     number = {3},
     year = {2020},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2020_211_3_a5/}
}
                      
                      
                    С. A. Shramov. Birational automorphisms of Severi-Brauer surfaces. Sbornik. Mathematics, Tome 211 (2020) no. 3, pp. 466-480. http://geodesic.mathdoc.fr/item/SM_2020_211_3_a5/
