Birational automorphisms of Severi-Brauer surfaces
Sbornik. Mathematics, Tome 211 (2020) no. 3, pp. 466-480

Voir la notice de l'article provenant de la source Math-Net.Ru

We prove that a finite group acting by birational automorphisms of a nontrivial Severi-Brauer surface over a field of characteristic zero contains a normal abelian subgroup of index at most $3$. Also, we find an explicit bound for the orders of such finite groups in the case when the base field contains all roots of $1$. Bibliography: 25 titles.
Keywords: Severi-Brauer surface, group of birational automorphisms.
@article{SM_2020_211_3_a5,
     author = {{\CYRS}. A. Shramov},
     title = {Birational automorphisms of {Severi-Brauer} surfaces},
     journal = {Sbornik. Mathematics},
     pages = {466--480},
     publisher = {mathdoc},
     volume = {211},
     number = {3},
     year = {2020},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2020_211_3_a5/}
}
TY  - JOUR
AU  - С. A. Shramov
TI  - Birational automorphisms of Severi-Brauer surfaces
JO  - Sbornik. Mathematics
PY  - 2020
SP  - 466
EP  - 480
VL  - 211
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SM_2020_211_3_a5/
LA  - en
ID  - SM_2020_211_3_a5
ER  - 
%0 Journal Article
%A С. A. Shramov
%T Birational automorphisms of Severi-Brauer surfaces
%J Sbornik. Mathematics
%D 2020
%P 466-480
%V 211
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SM_2020_211_3_a5/
%G en
%F SM_2020_211_3_a5
С. A. Shramov. Birational automorphisms of Severi-Brauer surfaces. Sbornik. Mathematics, Tome 211 (2020) no. 3, pp. 466-480. http://geodesic.mathdoc.fr/item/SM_2020_211_3_a5/