Mots-clés : homotopy.
@article{SM_2020_211_3_a4,
author = {K. S. Shklyaev},
title = {A~connected compact locally {Chebyshev} set in a~finite-dimensional space is {a~Chebyshev} set},
journal = {Sbornik. Mathematics},
pages = {455--465},
year = {2020},
volume = {211},
number = {3},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SM_2020_211_3_a4/}
}
K. S. Shklyaev. A connected compact locally Chebyshev set in a finite-dimensional space is a Chebyshev set. Sbornik. Mathematics, Tome 211 (2020) no. 3, pp. 455-465. http://geodesic.mathdoc.fr/item/SM_2020_211_3_a4/
[1] A. A. Flerov, “Locally Chebyshev sets on the plane”, Math. Notes, 97:1 (2015), 136–142 | DOI | DOI | MR | Zbl
[2] A. R. Alimov, “On approximative properties of locally Chebyshev sets”, Proc. Inst. Math. Mech. Natl. Acad. Sci. Azerb., 44:1 (2018), 36–42 | MR | Zbl
[3] A. R. Alimov, I. G. Tsar'kov, “Connectedness and solarity in problems of best and near-best approximation”, Russian Math. Surveys, 71:1 (2016), 1–77 | DOI | DOI | MR | Zbl
[4] A. A. Flerov, Izbrannye geometricheskie svoistva mnozhestv s konechnoznachnoi metricheskoi proektsiei, Diss. ... kand. fiz.-matem. nauk, MGU, M., 2016, 68 pp.
[5] L. P. Vlasov, “Approximative properties of sets in normed linear spaces”, Russian Math. Surveys, 28:6 (1973), 1–66 | DOI | MR | Zbl
[6] A. R. Alimov, M. I. Karlov, “Sets with external Chebyshev layer”, Math. Notes, 69:2 (2001), 269–273 | DOI | DOI | MR | Zbl
[7] A. Czarnecki, M. Kulczycki, W. Lubawski, “On the connectedness of boundary and complement for domains”, Ann. Polon. Math., 103:2 (2011), 189–191 | DOI | MR | Zbl
[8] A. T. Fomenko, D. B. Fuks, Kurs gomotopicheskoi topologii, Nauka, M., 1989, 496 pp. | MR | Zbl
[9] V. V. Prasolov, Elements of homology theory, Grad. Stud. Math., 81, Amer. Math. Soc., Providence, RI, x+418 pp. | DOI | MR | Zbl
[10] A. D. Aleksandrov, N. Yu. Netsvetaev, Geometriya, 2-e izd., BKhV-Peterburg, SPb., 2010, 612 pp. | MR | Zbl
[11] M. Brown, “A proof of the generalized Schoenflies theorem”, Bull. Amer. Math. Soc., 66:2 (1960), 74–76 | DOI | MR | Zbl