A~connected compact locally Chebyshev set in a~finite-dimensional space is a~Chebyshev set
Sbornik. Mathematics, Tome 211 (2020) no. 3, pp. 455-465

Voir la notice de l'article provenant de la source Math-Net.Ru

Let $X$ be a Banach space. A set $M\subset X$ is a Chebyshev set if, for each $x\in X$, there exists a unique best approximation to $x$ in $M$. A set $M$ is locally Chebyshev if, for any point $x\in M$, there exists a Chebyshev set $F_x\subset M$ such that some neighbourhood of $x$ in $M$ lies in $F_x$. It is shown that each connected compact locally Chebyshev set in a finite-dimensional normed space is a Chebyshev set. Bibliography: 11 titles.
Keywords: Chebyshev set, metric projection, Chebyshev layer, covering
Mots-clés : homotopy.
@article{SM_2020_211_3_a4,
     author = {K. S. Shklyaev},
     title = {A~connected compact locally {Chebyshev} set in a~finite-dimensional space is {a~Chebyshev} set},
     journal = {Sbornik. Mathematics},
     pages = {455--465},
     publisher = {mathdoc},
     volume = {211},
     number = {3},
     year = {2020},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2020_211_3_a4/}
}
TY  - JOUR
AU  - K. S. Shklyaev
TI  - A~connected compact locally Chebyshev set in a~finite-dimensional space is a~Chebyshev set
JO  - Sbornik. Mathematics
PY  - 2020
SP  - 455
EP  - 465
VL  - 211
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SM_2020_211_3_a4/
LA  - en
ID  - SM_2020_211_3_a4
ER  - 
%0 Journal Article
%A K. S. Shklyaev
%T A~connected compact locally Chebyshev set in a~finite-dimensional space is a~Chebyshev set
%J Sbornik. Mathematics
%D 2020
%P 455-465
%V 211
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SM_2020_211_3_a4/
%G en
%F SM_2020_211_3_a4
K. S. Shklyaev. A~connected compact locally Chebyshev set in a~finite-dimensional space is a~Chebyshev set. Sbornik. Mathematics, Tome 211 (2020) no. 3, pp. 455-465. http://geodesic.mathdoc.fr/item/SM_2020_211_3_a4/