Multivalued solutions of hyperbolic Monge-Ampère equations: solvability, integrability, approximation
Sbornik. Mathematics, Tome 211 (2020) no. 3, pp. 373-421 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Solvability in the class of multivalued solutions is investigated for Cauchy problems for hyperbolic Monge-Ampère equations. A characteristic uniformization is constructed on definite solutions of this problem, using which the existence and uniqueness of a maximal solution is established. It is shown that the characteristics in the different families that lie on a maximal solution and converge to a definite boundary point have infinite lengths. In this way a theory of global solvability is developed for the Cauchy problem for hyperbolic Monge-Ampère equations, which is analogous to the corresponding theory for ordinary differential equations. Using the same methods, a stable explicit difference scheme for approximating multivalued solutions can be constructed and a number of problems which are important for applications can be integrated by quadratures. Bibliography: 23 titles.
Keywords: quasilinear equations, gradient blowup, complete solutions, difference approximation.
Mots-clés : maximal solutions
@article{SM_2020_211_3_a2,
     author = {D. V. Tunitsky},
     title = {Multivalued solutions of hyperbolic {Monge-Amp\`ere} equations: solvability, integrability, approximation},
     journal = {Sbornik. Mathematics},
     pages = {373--421},
     year = {2020},
     volume = {211},
     number = {3},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2020_211_3_a2/}
}
TY  - JOUR
AU  - D. V. Tunitsky
TI  - Multivalued solutions of hyperbolic Monge-Ampère equations: solvability, integrability, approximation
JO  - Sbornik. Mathematics
PY  - 2020
SP  - 373
EP  - 421
VL  - 211
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/SM_2020_211_3_a2/
LA  - en
ID  - SM_2020_211_3_a2
ER  - 
%0 Journal Article
%A D. V. Tunitsky
%T Multivalued solutions of hyperbolic Monge-Ampère equations: solvability, integrability, approximation
%J Sbornik. Mathematics
%D 2020
%P 373-421
%V 211
%N 3
%U http://geodesic.mathdoc.fr/item/SM_2020_211_3_a2/
%G en
%F SM_2020_211_3_a2
D. V. Tunitsky. Multivalued solutions of hyperbolic Monge-Ampère equations: solvability, integrability, approximation. Sbornik. Mathematics, Tome 211 (2020) no. 3, pp. 373-421. http://geodesic.mathdoc.fr/item/SM_2020_211_3_a2/

[1] P. Hartman, Ordinary differential equations, John Wiley Sons, Inc., New York–London–Sydney, 1964, xiv+612 pp. | MR | MR | Zbl | Zbl

[2] P. D. Lax, “Development of singularities of solutions of nonlinear hyperbolic partial differential equations”, J. Math. Phys., 5:5 (1964), 611–613 | DOI | MR | Zbl

[3] N. J. Zabusky, “Exact solution for the vibrations of a nonlinear continuous model string”, J. Math. Phys., 3:5 (1962), 1028–1039 | DOI | MR | Zbl

[4] B. L. Roždestvenskiĭ, N. N. Janenko, Systems of quasilinear equations and their applications to gas dynamics, Transl. Math. Monogr., 55, Amer. Math. Soc., Providence, RI, 1983, xx+676 pp. | MR | MR | Zbl | Zbl

[5] D. V. Tunitskii, “On the global solubility of the Monge–Ampère hyperbolic equations”, Izv. Math., 61:5 (1997), 1069–1111 | DOI | DOI | MR | Zbl

[6] R. Courant, D. Hilbert, Methods of mathematical physics, v. II, Partial differential equations, (vol. II by R. Courant), Interscience Publishers, a division of John Wiley Sons, New York–London, 1962, xxii+830 pp. | MR | MR | Zbl | Zbl

[7] É. Cartan, Les systèmes différentiels extérieurs et leurs applications géométriques, Actualités Sci. Ind., 994, Hermann et Cie., Paris, 1945, 214 pp. | MR | Zbl

[8] M. Postnikov, Smooth manifolds, Lectures in geometry. Semester III, Mir, Moscow, 1989, 511 pp. | MR | MR | Zbl | Zbl

[9] V. V. Lychagin, “Contact geometry and non-linear second-order differential equations”, Russian Math. Surveys, 34:1 (1979), 149–180 | DOI | MR | Zbl

[10] A. Kushner, V. Lychagin, V. Rubtsov, Contact geometry and nonlinear differential equations, Encyclopedia Math. Appl., 101, Cambridge Univ. Press, Cambridge, 2007, xxii+496 pp. | DOI | MR | Zbl

[11] A. M. Vinogradov, “Multivalued solutions and a principle of classification of nonlinear differential equations”, Soviet Math. Dokl., 14 (1973), 661–665 | MR | Zbl

[12] F. W. Warner, Foundations of differentiable manifolds and Lie groups, Scott, Foresman and Co., Glenview, IL–London, 1971, viii+270 pp. | MR | MR | Zbl | Zbl

[13] R. A. Aleksandryan, E. A. Mirzakhanyan, Obschaya topologiya, Vysshaya shkola, M., 1979, 336 pp. | Zbl

[14] M. W. Hirsch, Differential topology, Grad. Texts in Math., 33, Springer-Verlag, New York–Heidelberg, 1976, x+221 pp. | DOI | MR | MR | Zbl | Zbl

[15] H. Lewy, “Über das Anfangswertproblem einer hyperbolischen nichtlinearen partiellen Differentialgleichung zweiter Ordnung mit zwei unabhängigen Veränderlichen”, Math. Ann., 98:1 (1928), 179–191 | DOI | MR | Zbl

[16] P. Hartman, A. Wintner, “On hyperbolic partial differential equations”, Amer. J. Math., 74:4 (1952), 834–864 | DOI | MR | Zbl

[17] Obschaya algebra, v. 1, ed. L. A. Skornyakov, Nauka, M., 1990, 592 pp. | MR | Zbl

[18] L. Pontriaguine, Équations différentielles ordinaires, Éditions Mir, Moscou, 1969, 347 pp. | MR | MR | Zbl | Zbl

[19] M. E. Taylor, Partial differential equations, v. 1, Appl. Math. Sci., 115, Basic theory, Springer-Verlag, Berlin, 1996, xxi+563 pp. | MR | Zbl

[20] R. Courant, K. O. Friedrichs, Supersonic flow and shock waves, Pure Appl. Math., 1, Interscience Publishers, Inc., New York, 1948, xvi+464 pp. | MR | Zbl

[21] G. G. Chernyi, Gazovaya dinamika, Nauka, M., 1988, 424 pp.

[22] R. Courant, K. Friedrichs, H. Lewy, “Über die partiellen Differenzengleichungen der mathematischen Physik”, Math. Ann., 100:1 (1928), 32–74 | DOI | MR | Zbl

[23] K. R. Parthasarathy, Introduction to probability and measure, The Macmillan Co. of India, Ltd., Delhi, 1977, xii+312 pp. | MR | MR | Zbl | Zbl