Mots-clés : maximal solutions
@article{SM_2020_211_3_a2,
author = {D. V. Tunitsky},
title = {Multivalued solutions of hyperbolic {Monge-Amp\`ere} equations: solvability, integrability, approximation},
journal = {Sbornik. Mathematics},
pages = {373--421},
year = {2020},
volume = {211},
number = {3},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SM_2020_211_3_a2/}
}
D. V. Tunitsky. Multivalued solutions of hyperbolic Monge-Ampère equations: solvability, integrability, approximation. Sbornik. Mathematics, Tome 211 (2020) no. 3, pp. 373-421. http://geodesic.mathdoc.fr/item/SM_2020_211_3_a2/
[1] P. Hartman, Ordinary differential equations, John Wiley Sons, Inc., New York–London–Sydney, 1964, xiv+612 pp. | MR | MR | Zbl | Zbl
[2] P. D. Lax, “Development of singularities of solutions of nonlinear hyperbolic partial differential equations”, J. Math. Phys., 5:5 (1964), 611–613 | DOI | MR | Zbl
[3] N. J. Zabusky, “Exact solution for the vibrations of a nonlinear continuous model string”, J. Math. Phys., 3:5 (1962), 1028–1039 | DOI | MR | Zbl
[4] B. L. Roždestvenskiĭ, N. N. Janenko, Systems of quasilinear equations and their applications to gas dynamics, Transl. Math. Monogr., 55, Amer. Math. Soc., Providence, RI, 1983, xx+676 pp. | MR | MR | Zbl | Zbl
[5] D. V. Tunitskii, “On the global solubility of the Monge–Ampère hyperbolic equations”, Izv. Math., 61:5 (1997), 1069–1111 | DOI | DOI | MR | Zbl
[6] R. Courant, D. Hilbert, Methods of mathematical physics, v. II, Partial differential equations, (vol. II by R. Courant), Interscience Publishers, a division of John Wiley Sons, New York–London, 1962, xxii+830 pp. | MR | MR | Zbl | Zbl
[7] É. Cartan, Les systèmes différentiels extérieurs et leurs applications géométriques, Actualités Sci. Ind., 994, Hermann et Cie., Paris, 1945, 214 pp. | MR | Zbl
[8] M. Postnikov, Smooth manifolds, Lectures in geometry. Semester III, Mir, Moscow, 1989, 511 pp. | MR | MR | Zbl | Zbl
[9] V. V. Lychagin, “Contact geometry and non-linear second-order differential equations”, Russian Math. Surveys, 34:1 (1979), 149–180 | DOI | MR | Zbl
[10] A. Kushner, V. Lychagin, V. Rubtsov, Contact geometry and nonlinear differential equations, Encyclopedia Math. Appl., 101, Cambridge Univ. Press, Cambridge, 2007, xxii+496 pp. | DOI | MR | Zbl
[11] A. M. Vinogradov, “Multivalued solutions and a principle of classification of nonlinear differential equations”, Soviet Math. Dokl., 14 (1973), 661–665 | MR | Zbl
[12] F. W. Warner, Foundations of differentiable manifolds and Lie groups, Scott, Foresman and Co., Glenview, IL–London, 1971, viii+270 pp. | MR | MR | Zbl | Zbl
[13] R. A. Aleksandryan, E. A. Mirzakhanyan, Obschaya topologiya, Vysshaya shkola, M., 1979, 336 pp. | Zbl
[14] M. W. Hirsch, Differential topology, Grad. Texts in Math., 33, Springer-Verlag, New York–Heidelberg, 1976, x+221 pp. | DOI | MR | MR | Zbl | Zbl
[15] H. Lewy, “Über das Anfangswertproblem einer hyperbolischen nichtlinearen partiellen Differentialgleichung zweiter Ordnung mit zwei unabhängigen Veränderlichen”, Math. Ann., 98:1 (1928), 179–191 | DOI | MR | Zbl
[16] P. Hartman, A. Wintner, “On hyperbolic partial differential equations”, Amer. J. Math., 74:4 (1952), 834–864 | DOI | MR | Zbl
[17] Obschaya algebra, v. 1, ed. L. A. Skornyakov, Nauka, M., 1990, 592 pp. | MR | Zbl
[18] L. Pontriaguine, Équations différentielles ordinaires, Éditions Mir, Moscou, 1969, 347 pp. | MR | MR | Zbl | Zbl
[19] M. E. Taylor, Partial differential equations, v. 1, Appl. Math. Sci., 115, Basic theory, Springer-Verlag, Berlin, 1996, xxi+563 pp. | MR | Zbl
[20] R. Courant, K. O. Friedrichs, Supersonic flow and shock waves, Pure Appl. Math., 1, Interscience Publishers, Inc., New York, 1948, xvi+464 pp. | MR | Zbl
[21] G. G. Chernyi, Gazovaya dinamika, Nauka, M., 1988, 424 pp.
[22] R. Courant, K. Friedrichs, H. Lewy, “Über die partiellen Differenzengleichungen der mathematischen Physik”, Math. Ann., 100:1 (1928), 32–74 | DOI | MR | Zbl
[23] K. R. Parthasarathy, Introduction to probability and measure, The Macmillan Co. of India, Ltd., Delhi, 1977, xii+312 pp. | MR | MR | Zbl | Zbl