Multivalued solutions of hyperbolic Monge-Amp\`ere equations: solvability, integrability, approximation
Sbornik. Mathematics, Tome 211 (2020) no. 3, pp. 373-421

Voir la notice de l'article provenant de la source Math-Net.Ru

Solvability in the class of multivalued solutions is investigated for Cauchy problems for hyperbolic Monge-Ampère equations. A characteristic uniformization is constructed on definite solutions of this problem, using which the existence and uniqueness of a maximal solution is established. It is shown that the characteristics in the different families that lie on a maximal solution and converge to a definite boundary point have infinite lengths. In this way a theory of global solvability is developed for the Cauchy problem for hyperbolic Monge-Ampère equations, which is analogous to the corresponding theory for ordinary differential equations. Using the same methods, a stable explicit difference scheme for approximating multivalued solutions can be constructed and a number of problems which are important for applications can be integrated by quadratures. Bibliography: 23 titles.
Keywords: quasilinear equations, gradient blowup, complete solutions, difference approximation.
Mots-clés : maximal solutions
@article{SM_2020_211_3_a2,
     author = {D. V. Tunitsky},
     title = {Multivalued solutions of hyperbolic {Monge-Amp\`ere} equations: solvability, integrability, approximation},
     journal = {Sbornik. Mathematics},
     pages = {373--421},
     publisher = {mathdoc},
     volume = {211},
     number = {3},
     year = {2020},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2020_211_3_a2/}
}
TY  - JOUR
AU  - D. V. Tunitsky
TI  - Multivalued solutions of hyperbolic Monge-Amp\`ere equations: solvability, integrability, approximation
JO  - Sbornik. Mathematics
PY  - 2020
SP  - 373
EP  - 421
VL  - 211
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SM_2020_211_3_a2/
LA  - en
ID  - SM_2020_211_3_a2
ER  - 
%0 Journal Article
%A D. V. Tunitsky
%T Multivalued solutions of hyperbolic Monge-Amp\`ere equations: solvability, integrability, approximation
%J Sbornik. Mathematics
%D 2020
%P 373-421
%V 211
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SM_2020_211_3_a2/
%G en
%F SM_2020_211_3_a2
D. V. Tunitsky. Multivalued solutions of hyperbolic Monge-Amp\`ere equations: solvability, integrability, approximation. Sbornik. Mathematics, Tome 211 (2020) no. 3, pp. 373-421. http://geodesic.mathdoc.fr/item/SM_2020_211_3_a2/