Global extrema of the Delange function, bounds for digital sums and concave functions
Sbornik. Mathematics, Tome 211 (2020) no. 3, pp. 336-372 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The sums $S_q(N)$ are defined by the equality $S_q(N)=s_q(1)+\dots+s_q(N-1)$ for all positive integers $N$ and $q\geqslant2$, where $s_q(n)$ is the sum of digits of the integer $n$ written in the system with base $q$. In 1975 Delange generalised Trollope's formula and proved that $S_q(N)/N-({q-1})/2\cdot\log_qN=-1/2\cdot f_q(q^{\{\log_q N\}-1})$, where $f_q(x)=(q-1)\log_q x+D_q(x)/x$ and $D_q$ is the continuous nowhere differentiable Delange function. We find global extrema of $f_q$ and, using this, obtain a precise bound for the difference $S_q(N)/N-(q-1)/2\cdot\log_qN$. In the case $q=2$ this becomes the bound for binary sums proved by Krüppel in 2008 and also earlier by other authors. We also evaluate the global extrema of some other continuous nowhere differentiable functions. We introduce the natural concave hull of a function and prove a criterion simplifying the evaluation of this hull. Moreover, we introduce the notion of an extreme subargument of a function on a convex set. We show that all points of global maximum of the difference $f-g$, where the function $g$ is strictly concave and some additional conditions hold, are extreme subarguments for $f$. A similar result is obtained for functions of the form $v+f/w$. We evaluate the global extrema and find extreme subarguments of the Delange function on the interval $[0,1]$. The results in the paper are illustrated by graphs and tables. Bibliography: 16 titles.
Keywords: Trollope-Delange formula for digital sums, continuous nowhere differentiable Delange function, global extrema of a non-differentiable function, natural concave hull of a function.
Mots-clés : extreme subarguments (subabscissas) of a function
@article{SM_2020_211_3_a1,
     author = {O. E. Galkin and S. Yu. Galkina},
     title = {Global extrema of the {Delange} function, bounds for digital sums and concave functions},
     journal = {Sbornik. Mathematics},
     pages = {336--372},
     year = {2020},
     volume = {211},
     number = {3},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2020_211_3_a1/}
}
TY  - JOUR
AU  - O. E. Galkin
AU  - S. Yu. Galkina
TI  - Global extrema of the Delange function, bounds for digital sums and concave functions
JO  - Sbornik. Mathematics
PY  - 2020
SP  - 336
EP  - 372
VL  - 211
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/SM_2020_211_3_a1/
LA  - en
ID  - SM_2020_211_3_a1
ER  - 
%0 Journal Article
%A O. E. Galkin
%A S. Yu. Galkina
%T Global extrema of the Delange function, bounds for digital sums and concave functions
%J Sbornik. Mathematics
%D 2020
%P 336-372
%V 211
%N 3
%U http://geodesic.mathdoc.fr/item/SM_2020_211_3_a1/
%G en
%F SM_2020_211_3_a1
O. E. Galkin; S. Yu. Galkina. Global extrema of the Delange function, bounds for digital sums and concave functions. Sbornik. Mathematics, Tome 211 (2020) no. 3, pp. 336-372. http://geodesic.mathdoc.fr/item/SM_2020_211_3_a1/

[1] P. C. Allaart, K. Kawamura, “The Takagi function: a survey”, Real Anal. Exchange, 37:1 (2011), 1–54 | MR | Zbl

[2] L. H. Y. Chen, Hsien-Kuei Hwang, V. Zacharovas, “Distribution of the sum-of-digits function of random integers: a survey”, Probab. Surv., 11 (2014), 177–236 | DOI | MR | Zbl

[3] H. Delange, “Sur la fonction sommatoire de la fonction “somme des chiffres””, Enseign. Math. (2), 21 (1975), 31–47 | MR | Zbl

[4] O. E. Galkin, S. Yu. Galkina, “On properties of functions in exponential Takagi class”, Ufa Math. J., 7:3 (2015), 28–37 | DOI | MR

[5] O. E. Galkin, S. Yu. Galkina, “Globalnye ekstremumy funktsii Kobayashi–Greya–Takagi i dvoichnye tsifrovye summy”, Vestn. Udmurtsk. un-ta. Matem. Mekh. Kompyut. nauki, 27:1 (2017), 17–25 | DOI | MR | Zbl

[6] J. P. Kahane, “Sur l'exemple, donné par M. de Rham, d'une fonction continue sans dérivée”, Enseign. Math. (2), 5 (1959), 53–57 | MR | Zbl

[7] Y. Kamiya, T. Okada, T. Sekiguchi, Y. Shiota, “Power and exponential sums for generalized coding systems by a measure theoretic approach”, Theoret. Comput. Sci., 592 (2015), 23–38 | DOI | MR | Zbl

[8] M. Krüppel, “Takagi's continuous nowhere differentiable function and binary digital sums”, Rostock. Math. Kolloq., 63 (2008), 37–54 | MR | Zbl

[9] M. Krüppel, “De Rham's singular function, its partial derivatives with respect to the parameter and binary digital sums”, Rostock. Math. Kolloq., 64 (2009), 57–74 | MR | Zbl

[10] J. C. Lagarias, “The Takagi function and its properties”, Functions in number theory and their probabilistic aspects, RIMS Kôkyûroku Bessatsu, B34, Res. Inst. Math. Sci. (RIMS), Kyoto, 2012, 153–189 | MR | Zbl

[11] J. H. Lambert, “Vorläufige Kenntnisse für die, so die Quadratur und Rektifikation des Zirculs suchen”, Beiträge zum Gebrauche der Mathematik und deren Anwendung, v. 2, Verlage des Buchladens der Realschule, Berlin, 1770, 140–169

[12] B. Martynov, “O maksimumakh funktsii Van-der-Vardena”, Kvant, 1982, no. 6, 8–14

[13] K. Muramoto, T. Okada, T. Sekiguchi, Y. Shiota, “Digital sum problems for the $p$-adic expansion of natural numbers”, Interdiscip. Inform. Sci., 6:2 (2000), 105–109 | DOI | MR | Zbl

[14] E. S. Polovinkin, M. V. Balashov, Elementy vypuklogo i silno vypuklogo analiza, 2-e izd., Fizmatlit, M., 2007, 438 pp. | Zbl

[15] T. Takagi, “A simple example of the continuous function without derivative”, Phys.-Math. Soc. Japan, 1 (1903), 176–177 ; The collected papers of Teiji Takagi, Iwanami Shoten Publishers, Tokyo, 1973, 5–6 | Zbl

[16] J. R. Trollope, “An explicit expression for binary digital sums”, Math. Mag., 41 (1968), 21–25 | DOI | MR | Zbl