Mots-clés : extreme subarguments (subabscissas) of a function
@article{SM_2020_211_3_a1,
author = {O. E. Galkin and S. Yu. Galkina},
title = {Global extrema of the {Delange} function, bounds for digital sums and concave functions},
journal = {Sbornik. Mathematics},
pages = {336--372},
year = {2020},
volume = {211},
number = {3},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SM_2020_211_3_a1/}
}
O. E. Galkin; S. Yu. Galkina. Global extrema of the Delange function, bounds for digital sums and concave functions. Sbornik. Mathematics, Tome 211 (2020) no. 3, pp. 336-372. http://geodesic.mathdoc.fr/item/SM_2020_211_3_a1/
[1] P. C. Allaart, K. Kawamura, “The Takagi function: a survey”, Real Anal. Exchange, 37:1 (2011), 1–54 | MR | Zbl
[2] L. H. Y. Chen, Hsien-Kuei Hwang, V. Zacharovas, “Distribution of the sum-of-digits function of random integers: a survey”, Probab. Surv., 11 (2014), 177–236 | DOI | MR | Zbl
[3] H. Delange, “Sur la fonction sommatoire de la fonction “somme des chiffres””, Enseign. Math. (2), 21 (1975), 31–47 | MR | Zbl
[4] O. E. Galkin, S. Yu. Galkina, “On properties of functions in exponential Takagi class”, Ufa Math. J., 7:3 (2015), 28–37 | DOI | MR
[5] O. E. Galkin, S. Yu. Galkina, “Globalnye ekstremumy funktsii Kobayashi–Greya–Takagi i dvoichnye tsifrovye summy”, Vestn. Udmurtsk. un-ta. Matem. Mekh. Kompyut. nauki, 27:1 (2017), 17–25 | DOI | MR | Zbl
[6] J. P. Kahane, “Sur l'exemple, donné par M. de Rham, d'une fonction continue sans dérivée”, Enseign. Math. (2), 5 (1959), 53–57 | MR | Zbl
[7] Y. Kamiya, T. Okada, T. Sekiguchi, Y. Shiota, “Power and exponential sums for generalized coding systems by a measure theoretic approach”, Theoret. Comput. Sci., 592 (2015), 23–38 | DOI | MR | Zbl
[8] M. Krüppel, “Takagi's continuous nowhere differentiable function and binary digital sums”, Rostock. Math. Kolloq., 63 (2008), 37–54 | MR | Zbl
[9] M. Krüppel, “De Rham's singular function, its partial derivatives with respect to the parameter and binary digital sums”, Rostock. Math. Kolloq., 64 (2009), 57–74 | MR | Zbl
[10] J. C. Lagarias, “The Takagi function and its properties”, Functions in number theory and their probabilistic aspects, RIMS Kôkyûroku Bessatsu, B34, Res. Inst. Math. Sci. (RIMS), Kyoto, 2012, 153–189 | MR | Zbl
[11] J. H. Lambert, “Vorläufige Kenntnisse für die, so die Quadratur und Rektifikation des Zirculs suchen”, Beiträge zum Gebrauche der Mathematik und deren Anwendung, v. 2, Verlage des Buchladens der Realschule, Berlin, 1770, 140–169
[12] B. Martynov, “O maksimumakh funktsii Van-der-Vardena”, Kvant, 1982, no. 6, 8–14
[13] K. Muramoto, T. Okada, T. Sekiguchi, Y. Shiota, “Digital sum problems for the $p$-adic expansion of natural numbers”, Interdiscip. Inform. Sci., 6:2 (2000), 105–109 | DOI | MR | Zbl
[14] E. S. Polovinkin, M. V. Balashov, Elementy vypuklogo i silno vypuklogo analiza, 2-e izd., Fizmatlit, M., 2007, 438 pp. | Zbl
[15] T. Takagi, “A simple example of the continuous function without derivative”, Phys.-Math. Soc. Japan, 1 (1903), 176–177 ; The collected papers of Teiji Takagi, Iwanami Shoten Publishers, Tokyo, 1973, 5–6 | Zbl
[16] J. R. Trollope, “An explicit expression for binary digital sums”, Math. Mag., 41 (1968), 21–25 | DOI | MR | Zbl