On the heritability of the Sylow $\pi$-theorem by subgroups
Sbornik. Mathematics, Tome 211 (2020) no. 3, pp. 309-335

Voir la notice de l'article provenant de la source Math-Net.Ru

Let $\pi$ be a set of primes. We say that the Sylow $\pi$-theorem holds for a finite group $G$, or $G$ is a $\mathscr D_\pi$-group, if the maximal $\pi$-subgroups of $G$ are conjugate. Obviously, the Sylow $\pi$-theorem implies the existence of $\pi$-Hall subgroups. In this paper, we give an affirmative answer to Problem 17.44, (b), in the Kourovka notebook: namely, we prove that in a $\mathscr D_\pi$-group an overgroup of a $\pi$-Hall subgroup is always a $\mathscr D_\pi$-group. Bibliography: 52 titles.
Keywords: finite group, $\pi$-Hall subgroup, group of Lie type, maximal subgroup.
Mots-clés : $\mathscr D_\pi$-group
@article{SM_2020_211_3_a0,
     author = {E. P. Vdovin and N. Ch. Manzaeva and D. O. Revin},
     title = {On the heritability of the {Sylow} $\pi$-theorem by subgroups},
     journal = {Sbornik. Mathematics},
     pages = {309--335},
     publisher = {mathdoc},
     volume = {211},
     number = {3},
     year = {2020},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2020_211_3_a0/}
}
TY  - JOUR
AU  - E. P. Vdovin
AU  - N. Ch. Manzaeva
AU  - D. O. Revin
TI  - On the heritability of the Sylow $\pi$-theorem by subgroups
JO  - Sbornik. Mathematics
PY  - 2020
SP  - 309
EP  - 335
VL  - 211
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SM_2020_211_3_a0/
LA  - en
ID  - SM_2020_211_3_a0
ER  - 
%0 Journal Article
%A E. P. Vdovin
%A N. Ch. Manzaeva
%A D. O. Revin
%T On the heritability of the Sylow $\pi$-theorem by subgroups
%J Sbornik. Mathematics
%D 2020
%P 309-335
%V 211
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SM_2020_211_3_a0/
%G en
%F SM_2020_211_3_a0
E. P. Vdovin; N. Ch. Manzaeva; D. O. Revin. On the heritability of the Sylow $\pi$-theorem by subgroups. Sbornik. Mathematics, Tome 211 (2020) no. 3, pp. 309-335. http://geodesic.mathdoc.fr/item/SM_2020_211_3_a0/