@article{SM_2020_211_2_a5,
author = {A. V. Cheremushkin},
title = {Partially invertible strongly dependent $n$-ary operations},
journal = {Sbornik. Mathematics},
pages = {291--308},
year = {2020},
volume = {211},
number = {2},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SM_2020_211_2_a5/}
}
A. V. Cheremushkin. Partially invertible strongly dependent $n$-ary operations. Sbornik. Mathematics, Tome 211 (2020) no. 2, pp. 291-308. http://geodesic.mathdoc.fr/item/SM_2020_211_2_a5/
[1] R. H. Bruck, A survey of binary systems, Ergeb. Math. Grenzgeb. (N.F.), 20, Springer Verlag, Berlin–Göttingen–Heidelberg, 1958, viii+185 pp. | MR | Zbl
[2] F. M. Malyshev, “The Post–Gluskin–Hosszú theorem for finite $n$-quasigroups and self-invariant families of permutations”, Sb. Math., 207:2 (2016), 226–237 | DOI | DOI | MR | Zbl
[3] F. M. Malyshev, “Teorema Posta–Gluskina–Khossu dlya $n$-kvazigrupp”, Materialy XIV mezhdunarodnoi konferentsii “Algebra i teoriya chisel: sovremennye problemy i prilozheniya”, posvyaschennoi 70-letiyu so dnya rozhdeniya G. I. Arkhipova i S. M. Voronina (Saratov, 2016), Issledovaniya po algebre, teorii chisel, funktsionalnomu analizu i smezhnym voprosam: mezhvuz. sb. nauch. tr., 8, Izd-vo Sarat. un-ta, Saratov, 2016, 59–62
[4] F. M. Malyshev, “Slabo obratimye $n$-kvazigruppy”, Chebyshevskii sb., 19:2 (2018), 305–318 | DOI
[5] A. V. Cheremushkin, “Analogues of Gluskin–Hosszú and Malyshev theorems for strongly dependent $n$-ary operations”, Discrete Math. Appl., 29:5 (2019), 295–302 | DOI | DOI | MR | Zbl
[6] V. D. Belousov, $n$-arnye kvazigruppy, Shtiintsa, Kishinev, 1972, 227 pp. | MR | Zbl
[7] F. N. Sokhatskii, “Ob assotsiativnosti mnogomestnykh operatsii”, Diskret. matem., 4:1 (1992), 66–84 | MR | Zbl
[8] F. N. Sokhatskii, “Obobschenie dvukh teorem Belousova dlya silno zavisimykh funktsii $k$-znachnoi logiki”, Issledovaniya po teorii binarnykh i $n$-arnykh kvazigrupp, Matem. issled., 85, Shtiintsa, Kishinev, 1985, 105–115 | MR | Zbl