Partially invertible strongly dependent $n$-ary operations
Sbornik. Mathematics, Tome 211 (2020) no. 2, pp. 291-308
Voir la notice de l'article provenant de la source Math-Net.Ru
We prove analogues of Malyshev's theorems on the structure of finite $n$-quasigroups with the weak invertibility condition and of Belousov's theorem with a description of $(i,j)$-associative $n$-quasigroups for the case of strongly dependent $n$-ary semigroup operations on a finite set.
Bibliography: 8 titles.
Keywords:
$n$-ary semigroup, strongly dependent operation, weakly invertible operation.
@article{SM_2020_211_2_a5,
author = {A. V. Cheremushkin},
title = {Partially invertible strongly dependent $n$-ary operations},
journal = {Sbornik. Mathematics},
pages = {291--308},
publisher = {mathdoc},
volume = {211},
number = {2},
year = {2020},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SM_2020_211_2_a5/}
}
A. V. Cheremushkin. Partially invertible strongly dependent $n$-ary operations. Sbornik. Mathematics, Tome 211 (2020) no. 2, pp. 291-308. http://geodesic.mathdoc.fr/item/SM_2020_211_2_a5/