Partially invertible strongly dependent $n$-ary operations
Sbornik. Mathematics, Tome 211 (2020) no. 2, pp. 291-308

Voir la notice de l'article provenant de la source Math-Net.Ru

We prove analogues of Malyshev's theorems on the structure of finite $n$-quasigroups with the weak invertibility condition and of Belousov's theorem with a description of $(i,j)$-associative $n$-quasigroups for the case of strongly dependent $n$-ary semigroup operations on a finite set. Bibliography: 8 titles.
Keywords: $n$-ary semigroup, strongly dependent operation, weakly invertible operation.
@article{SM_2020_211_2_a5,
     author = {A. V. Cheremushkin},
     title = {Partially invertible strongly dependent $n$-ary operations},
     journal = {Sbornik. Mathematics},
     pages = {291--308},
     publisher = {mathdoc},
     volume = {211},
     number = {2},
     year = {2020},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2020_211_2_a5/}
}
TY  - JOUR
AU  - A. V. Cheremushkin
TI  - Partially invertible strongly dependent $n$-ary operations
JO  - Sbornik. Mathematics
PY  - 2020
SP  - 291
EP  - 308
VL  - 211
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SM_2020_211_2_a5/
LA  - en
ID  - SM_2020_211_2_a5
ER  - 
%0 Journal Article
%A A. V. Cheremushkin
%T Partially invertible strongly dependent $n$-ary operations
%J Sbornik. Mathematics
%D 2020
%P 291-308
%V 211
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SM_2020_211_2_a5/
%G en
%F SM_2020_211_2_a5
A. V. Cheremushkin. Partially invertible strongly dependent $n$-ary operations. Sbornik. Mathematics, Tome 211 (2020) no. 2, pp. 291-308. http://geodesic.mathdoc.fr/item/SM_2020_211_2_a5/