Partially invertible strongly dependent $n$-ary operations
Sbornik. Mathematics, Tome 211 (2020) no. 2, pp. 291-308 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We prove analogues of Malyshev's theorems on the structure of finite $n$-quasigroups with the weak invertibility condition and of Belousov's theorem with a description of $(i,j)$-associative $n$-quasigroups for the case of strongly dependent $n$-ary semigroup operations on a finite set. Bibliography: 8 titles.
Keywords: $n$-ary semigroup, strongly dependent operation, weakly invertible operation.
@article{SM_2020_211_2_a5,
     author = {A. V. Cheremushkin},
     title = {Partially invertible strongly dependent $n$-ary operations},
     journal = {Sbornik. Mathematics},
     pages = {291--308},
     year = {2020},
     volume = {211},
     number = {2},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2020_211_2_a5/}
}
TY  - JOUR
AU  - A. V. Cheremushkin
TI  - Partially invertible strongly dependent $n$-ary operations
JO  - Sbornik. Mathematics
PY  - 2020
SP  - 291
EP  - 308
VL  - 211
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/SM_2020_211_2_a5/
LA  - en
ID  - SM_2020_211_2_a5
ER  - 
%0 Journal Article
%A A. V. Cheremushkin
%T Partially invertible strongly dependent $n$-ary operations
%J Sbornik. Mathematics
%D 2020
%P 291-308
%V 211
%N 2
%U http://geodesic.mathdoc.fr/item/SM_2020_211_2_a5/
%G en
%F SM_2020_211_2_a5
A. V. Cheremushkin. Partially invertible strongly dependent $n$-ary operations. Sbornik. Mathematics, Tome 211 (2020) no. 2, pp. 291-308. http://geodesic.mathdoc.fr/item/SM_2020_211_2_a5/

[1] R. H. Bruck, A survey of binary systems, Ergeb. Math. Grenzgeb. (N.F.), 20, Springer Verlag, Berlin–Göttingen–Heidelberg, 1958, viii+185 pp. | MR | Zbl

[2] F. M. Malyshev, “The Post–Gluskin–Hosszú theorem for finite $n$-quasigroups and self-invariant families of permutations”, Sb. Math., 207:2 (2016), 226–237 | DOI | DOI | MR | Zbl

[3] F. M. Malyshev, “Teorema Posta–Gluskina–Khossu dlya $n$-kvazigrupp”, Materialy XIV mezhdunarodnoi konferentsii “Algebra i teoriya chisel: sovremennye problemy i prilozheniya”, posvyaschennoi 70-letiyu so dnya rozhdeniya G. I. Arkhipova i S. M. Voronina (Saratov, 2016), Issledovaniya po algebre, teorii chisel, funktsionalnomu analizu i smezhnym voprosam: mezhvuz. sb. nauch. tr., 8, Izd-vo Sarat. un-ta, Saratov, 2016, 59–62

[4] F. M. Malyshev, “Slabo obratimye $n$-kvazigruppy”, Chebyshevskii sb., 19:2 (2018), 305–318 | DOI

[5] A. V. Cheremushkin, “Analogues of Gluskin–Hosszú and Malyshev theorems for strongly dependent $n$-ary operations”, Discrete Math. Appl., 29:5 (2019), 295–302 | DOI | DOI | MR | Zbl

[6] V. D. Belousov, $n$-arnye kvazigruppy, Shtiintsa, Kishinev, 1972, 227 pp. | MR | Zbl

[7] F. N. Sokhatskii, “Ob assotsiativnosti mnogomestnykh operatsii”, Diskret. matem., 4:1 (1992), 66–84 | MR | Zbl

[8] F. N. Sokhatskii, “Obobschenie dvukh teorem Belousova dlya silno zavisimykh funktsii $k$-znachnoi logiki”, Issledovaniya po teorii binarnykh i $n$-arnykh kvazigrupp, Matem. issled., 85, Shtiintsa, Kishinev, 1985, 105–115 | MR | Zbl