Symmetries in left-invariant optimal control problems
Sbornik. Mathematics, Tome 211 (2020) no. 2, pp. 275-290 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Left-invariant optimal control problems on Lie groups are considered. When studying the optimality of extreme trajectories, the crucial role is played by symmetries of the exponential map that are induced by symmetries of the conjugate subsystem of the Hamiltonian system of the Pontryagin maximum principle. A general construction is obtained for these symmetries of the exponential map for connected Lie groups with generic coadjoint orbits of codimension not exceeding one and with a connected stabilizer. Bibliography: 32 titles.
Keywords: symmetry, geometric control theory, Riemannian geometry, sub-Riemannian geometry.
@article{SM_2020_211_2_a4,
     author = {A. V. Podobryaev},
     title = {Symmetries in left-invariant optimal control problems},
     journal = {Sbornik. Mathematics},
     pages = {275--290},
     year = {2020},
     volume = {211},
     number = {2},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2020_211_2_a4/}
}
TY  - JOUR
AU  - A. V. Podobryaev
TI  - Symmetries in left-invariant optimal control problems
JO  - Sbornik. Mathematics
PY  - 2020
SP  - 275
EP  - 290
VL  - 211
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/SM_2020_211_2_a4/
LA  - en
ID  - SM_2020_211_2_a4
ER  - 
%0 Journal Article
%A A. V. Podobryaev
%T Symmetries in left-invariant optimal control problems
%J Sbornik. Mathematics
%D 2020
%P 275-290
%V 211
%N 2
%U http://geodesic.mathdoc.fr/item/SM_2020_211_2_a4/
%G en
%F SM_2020_211_2_a4
A. V. Podobryaev. Symmetries in left-invariant optimal control problems. Sbornik. Mathematics, Tome 211 (2020) no. 2, pp. 275-290. http://geodesic.mathdoc.fr/item/SM_2020_211_2_a4/

[1] A. A. Agrachev, Yu. L. Sachkov, Control theory from the geometric viewpoint, Encyclopaedia Math. Sci., 87, Control theory and optimization II, Springer-Verlag, Berlin, 2004, xiv+412 pp. | DOI | MR | Zbl | Zbl

[2] L. S. Pontryagin, V. G. Boltyanskii, R. V. Gamkrelidze, E. F. Mishchenko, The mathematical theory of optimal processes, Intersci. Publ. John Wiley Sons, Inc., New York–London, 1962, viii+360 pp. | MR | MR | Zbl | Zbl

[3] Yu. L. Sachkov, “The Maxwell set in the generalized Dido problem”, Sb. Math., 197:4 (2006), 595–621 | DOI | DOI | MR | Zbl

[4] S. G. Krantz, H. R. Parks, The implicit function theorem. History, theory, and applications, Birkhäuser Boston, Inc., Boston, MA, 2002, xii+163 pp. | DOI | MR | Zbl

[5] Yu. L. Sachkov, “Maxwell strata in the Euler elastic problem”, J. Dyn. Control Syst., 14:2 (2008), 169–234 | DOI | MR | Zbl

[6] A. A. Ardentov, “Multiple solutions in Euler's elastic problem”, Autom. Remote Control, 79:7 (2018), 1191–1206 | DOI | DOI | MR | Zbl

[7] A. Agrachev, D. Barilari, U. Boscain, A comprehensive introduction to sub-Riemannian geometry, Cambridge Stud. Adv. Math., 181, Cambridge Univ. Press, Cambridge, 2019 | DOI | Zbl

[8] C. Autenried, M. Godoy Molina, “The sub-Riemannian cut locus of $H$-type groups”, Math. Nachr., 289:1 (2016), 4–12 | DOI | MR | Zbl

[9] O. Myasnichenko, “Nilpotent $(3, 6)$ sub-Riemannian problem”, J. Dyn. Control Syst., 8:4 (2002), 573–597 | DOI | MR | Zbl

[10] A. Montanari, D. Morbidelli, “On the subRiemannian cut locus in a model of free two-step Carnot group”, Calc. Var. Partial Differential Equations, 56:2 (2017), 36, 26 pp. | DOI | MR | Zbl

[11] L. Rizzi, U. Serres, “On the cut locus of free, step two Carnot groups”, Proc. Amer. Math. Soc., 145:12 (2017), 5341–5357 | DOI | MR | Zbl

[12] Yu. L. Sachkov, “Discrete symmetries in the generalized Dido problem”, Sb. Math., 197:2 (2006), 235–257 | DOI | DOI | MR | Zbl

[13] Yu. L. Sachkov, “Complete description of the Maxwell strata in the generalized Dido problem”, Sb. Math., 197:6 (2006), 901–950 | DOI | DOI | MR | Zbl

[14] A. A. Ardentov, Yu. L. Sachkov, “Extremal trajectories in a nilpotent sub-Riemannian problem on the Engel group”, Sb. Math., 202:11 (2011), 1593–1615 | DOI | DOI | MR | Zbl

[15] A. A. Ardentov, Yu. L. Sachkov, “Conjugate points in nilpotent sub-Riemannian problem on the Engel group”, J. Math. Sci. (N. Y.), 195:3 (2013), 369–390 | DOI | MR | Zbl

[16] A. A. Ardentov, Yu. L. Sachkov, “Cut time in sub-Riemannian problem on Engel group”, ESAIM Control Optim. Calc. Var., 21:4 (2015), 958–988 | DOI | MR | Zbl

[17] A. A. Ardentov, Yu. L. Sachkov, “Maxwell strata and cut locus in the sub-Riemannian problem on the Engel group”, Regul. Chaotic Dyn., 22:8 (2017), 909–936 | DOI | MR | Zbl

[18] U. Boscain, F. Rossi, “Invariant Carnot–Caratheodory metrics on $\mathrm S^3$, $\operatorname{SO}(3)$, $\operatorname{SL}(2)$, and lens spaces”, SIAM J. Control Optim., 47:4 (2008), 1851–1878 | DOI | MR | Zbl

[19] V. N. Berestovskiĭ, I. A. Zubareva, “Geodesics and shortest arcs of a special sub-Riemannian metric on the Lie group $SL(2)$”, Siberian Math. J., 57:3 (2016), 411–424 | DOI | DOI | MR | Zbl

[20] V. N. Berestovskiĭ, I. A. Zubareva, “Geodesics and shortest arcs of a special sub-Riemannian metric on the Lie group $SO(3)$”, Siberian Math. J., 56:4 (2015), 601–611 | DOI | DOI | MR | Zbl

[21] C. Autenried, I. Markina, “Sub-Riemannian geometry of Stiefel manifolds”, SIAM J. Control Optim., 52:2 (2014), 939–959 | DOI | MR | Zbl

[22] A. V. Podobryaev, Yu. L. Sachkov, “Cut locus of a left invariant Riemannian metric on $\mathrm{SO}(3)$ in the axisymmetric case”, J. Geom. Phys., 110 (2016), 436–453 | DOI | MR | Zbl

[23] A. V. Podobryaev, Yu. L. Sachkov, “Symmetric Riemannian problem on the group of proper isometries of hyperbolic plane”, J. Dyn. Control Syst., 24:3 (2018), 391–423 | DOI | MR | Zbl

[24] I. Moiseev, Yu. L. Sachkov, “Maxwell strata in sub-Riemannian problem on the group of motions of a plane”, ESAIM Control Optim. Calc. Var., 16:2 (2010), 380–399 | DOI | MR | Zbl

[25] Yu. L. Sachkov, “Conjugate and cut time in the sub-Riemannian problem on the group of motions of a plane”, ESAIM Control Optim. Calc. Var., 16:4 (2010), 1018–1039 | DOI | MR | Zbl

[26] Yu. L. Sachkov, “Cut locus and optimal synthesis in the sub-Riemannian problem on the group of motions of a plane”, ESAIM Control Optim. Calc. Var., 17:2 (2011), 293–321 | DOI | MR | Zbl

[27] Ya. A. Butt, Yu. L. Sachkov, A. I. Bhatti, “Maxwell strata and conjugate points in the sub-Riemannian problem on the Lie group $\operatorname{SH}(2)$”, J. Dyn. Control Syst., 22:4 (2016), 747–770 | DOI | MR | Zbl

[28] Ya. A. Butt, Yu. L. Sachkov, A. I. Bhatti, “Cut locus and optimal synthesis in sub-Riemannian problem on the Lie group $\operatorname{SH}(2)$”, J. Dyn. Control Syst., 23:1 (2017), 155–195 | DOI | MR | Zbl

[29] Yu. L. Sachkov, “Maxwell strata and symmetries in the problem of optimal rolling of a sphere over a plane”, Sb. Math., 201:7 (2010), 1029–1051 | DOI | DOI | MR | Zbl

[30] A. A. Agrachev, A. V. Sarychev, “Filtrations of a Lie algebra of vector fields and the nilpotent approximation of controlled systems”, Soviet Math. Dokl., 36:1 (1988), 104–108 | MR | Zbl

[31] J. E. Marsden, T. S. Ratiu, Introduction to mechanics and symmetry. A basic exposition of classical mechanical systems, Texts Appl. Math., 17, 2nd ed., Springer-Verlag, New York, 1999, xviii+582 pp. | DOI | MR | Zbl

[32] J. Marsden, R. Montgomery, T. Ratiu, Reduction, symmetry, and phases in mechanics, Mem. Amer. Math. Soc., 88, no. 436, Amer. Math. Soc., Providence, RI, 1990, iv+110 pp. | DOI | MR | Zbl