@article{SM_2020_211_2_a4,
author = {A. V. Podobryaev},
title = {Symmetries in left-invariant optimal control problems},
journal = {Sbornik. Mathematics},
pages = {275--290},
year = {2020},
volume = {211},
number = {2},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SM_2020_211_2_a4/}
}
A. V. Podobryaev. Symmetries in left-invariant optimal control problems. Sbornik. Mathematics, Tome 211 (2020) no. 2, pp. 275-290. http://geodesic.mathdoc.fr/item/SM_2020_211_2_a4/
[1] A. A. Agrachev, Yu. L. Sachkov, Control theory from the geometric viewpoint, Encyclopaedia Math. Sci., 87, Control theory and optimization II, Springer-Verlag, Berlin, 2004, xiv+412 pp. | DOI | MR | Zbl | Zbl
[2] L. S. Pontryagin, V. G. Boltyanskii, R. V. Gamkrelidze, E. F. Mishchenko, The mathematical theory of optimal processes, Intersci. Publ. John Wiley Sons, Inc., New York–London, 1962, viii+360 pp. | MR | MR | Zbl | Zbl
[3] Yu. L. Sachkov, “The Maxwell set in the generalized Dido problem”, Sb. Math., 197:4 (2006), 595–621 | DOI | DOI | MR | Zbl
[4] S. G. Krantz, H. R. Parks, The implicit function theorem. History, theory, and applications, Birkhäuser Boston, Inc., Boston, MA, 2002, xii+163 pp. | DOI | MR | Zbl
[5] Yu. L. Sachkov, “Maxwell strata in the Euler elastic problem”, J. Dyn. Control Syst., 14:2 (2008), 169–234 | DOI | MR | Zbl
[6] A. A. Ardentov, “Multiple solutions in Euler's elastic problem”, Autom. Remote Control, 79:7 (2018), 1191–1206 | DOI | DOI | MR | Zbl
[7] A. Agrachev, D. Barilari, U. Boscain, A comprehensive introduction to sub-Riemannian geometry, Cambridge Stud. Adv. Math., 181, Cambridge Univ. Press, Cambridge, 2019 | DOI | Zbl
[8] C. Autenried, M. Godoy Molina, “The sub-Riemannian cut locus of $H$-type groups”, Math. Nachr., 289:1 (2016), 4–12 | DOI | MR | Zbl
[9] O. Myasnichenko, “Nilpotent $(3, 6)$ sub-Riemannian problem”, J. Dyn. Control Syst., 8:4 (2002), 573–597 | DOI | MR | Zbl
[10] A. Montanari, D. Morbidelli, “On the subRiemannian cut locus in a model of free two-step Carnot group”, Calc. Var. Partial Differential Equations, 56:2 (2017), 36, 26 pp. | DOI | MR | Zbl
[11] L. Rizzi, U. Serres, “On the cut locus of free, step two Carnot groups”, Proc. Amer. Math. Soc., 145:12 (2017), 5341–5357 | DOI | MR | Zbl
[12] Yu. L. Sachkov, “Discrete symmetries in the generalized Dido problem”, Sb. Math., 197:2 (2006), 235–257 | DOI | DOI | MR | Zbl
[13] Yu. L. Sachkov, “Complete description of the Maxwell strata in the generalized Dido problem”, Sb. Math., 197:6 (2006), 901–950 | DOI | DOI | MR | Zbl
[14] A. A. Ardentov, Yu. L. Sachkov, “Extremal trajectories in a nilpotent sub-Riemannian problem on the Engel group”, Sb. Math., 202:11 (2011), 1593–1615 | DOI | DOI | MR | Zbl
[15] A. A. Ardentov, Yu. L. Sachkov, “Conjugate points in nilpotent sub-Riemannian problem on the Engel group”, J. Math. Sci. (N. Y.), 195:3 (2013), 369–390 | DOI | MR | Zbl
[16] A. A. Ardentov, Yu. L. Sachkov, “Cut time in sub-Riemannian problem on Engel group”, ESAIM Control Optim. Calc. Var., 21:4 (2015), 958–988 | DOI | MR | Zbl
[17] A. A. Ardentov, Yu. L. Sachkov, “Maxwell strata and cut locus in the sub-Riemannian problem on the Engel group”, Regul. Chaotic Dyn., 22:8 (2017), 909–936 | DOI | MR | Zbl
[18] U. Boscain, F. Rossi, “Invariant Carnot–Caratheodory metrics on $\mathrm S^3$, $\operatorname{SO}(3)$, $\operatorname{SL}(2)$, and lens spaces”, SIAM J. Control Optim., 47:4 (2008), 1851–1878 | DOI | MR | Zbl
[19] V. N. Berestovskiĭ, I. A. Zubareva, “Geodesics and shortest arcs of a special sub-Riemannian metric on the Lie group $SL(2)$”, Siberian Math. J., 57:3 (2016), 411–424 | DOI | DOI | MR | Zbl
[20] V. N. Berestovskiĭ, I. A. Zubareva, “Geodesics and shortest arcs of a special sub-Riemannian metric on the Lie group $SO(3)$”, Siberian Math. J., 56:4 (2015), 601–611 | DOI | DOI | MR | Zbl
[21] C. Autenried, I. Markina, “Sub-Riemannian geometry of Stiefel manifolds”, SIAM J. Control Optim., 52:2 (2014), 939–959 | DOI | MR | Zbl
[22] A. V. Podobryaev, Yu. L. Sachkov, “Cut locus of a left invariant Riemannian metric on $\mathrm{SO}(3)$ in the axisymmetric case”, J. Geom. Phys., 110 (2016), 436–453 | DOI | MR | Zbl
[23] A. V. Podobryaev, Yu. L. Sachkov, “Symmetric Riemannian problem on the group of proper isometries of hyperbolic plane”, J. Dyn. Control Syst., 24:3 (2018), 391–423 | DOI | MR | Zbl
[24] I. Moiseev, Yu. L. Sachkov, “Maxwell strata in sub-Riemannian problem on the group of motions of a plane”, ESAIM Control Optim. Calc. Var., 16:2 (2010), 380–399 | DOI | MR | Zbl
[25] Yu. L. Sachkov, “Conjugate and cut time in the sub-Riemannian problem on the group of motions of a plane”, ESAIM Control Optim. Calc. Var., 16:4 (2010), 1018–1039 | DOI | MR | Zbl
[26] Yu. L. Sachkov, “Cut locus and optimal synthesis in the sub-Riemannian problem on the group of motions of a plane”, ESAIM Control Optim. Calc. Var., 17:2 (2011), 293–321 | DOI | MR | Zbl
[27] Ya. A. Butt, Yu. L. Sachkov, A. I. Bhatti, “Maxwell strata and conjugate points in the sub-Riemannian problem on the Lie group $\operatorname{SH}(2)$”, J. Dyn. Control Syst., 22:4 (2016), 747–770 | DOI | MR | Zbl
[28] Ya. A. Butt, Yu. L. Sachkov, A. I. Bhatti, “Cut locus and optimal synthesis in sub-Riemannian problem on the Lie group $\operatorname{SH}(2)$”, J. Dyn. Control Syst., 23:1 (2017), 155–195 | DOI | MR | Zbl
[29] Yu. L. Sachkov, “Maxwell strata and symmetries in the problem of optimal rolling of a sphere over a plane”, Sb. Math., 201:7 (2010), 1029–1051 | DOI | DOI | MR | Zbl
[30] A. A. Agrachev, A. V. Sarychev, “Filtrations of a Lie algebra of vector fields and the nilpotent approximation of controlled systems”, Soviet Math. Dokl., 36:1 (1988), 104–108 | MR | Zbl
[31] J. E. Marsden, T. S. Ratiu, Introduction to mechanics and symmetry. A basic exposition of classical mechanical systems, Texts Appl. Math., 17, 2nd ed., Springer-Verlag, New York, 1999, xviii+582 pp. | DOI | MR | Zbl
[32] J. Marsden, R. Montgomery, T. Ratiu, Reduction, symmetry, and phases in mechanics, Mem. Amer. Math. Soc., 88, no. 436, Amer. Math. Soc., Providence, RI, 1990, iv+110 pp. | DOI | MR | Zbl