Existence and uniqueness of a weak solution of an integro-differential aggregation equation on a Riemannian manifold
Sbornik. Mathematics, Tome 211 (2020) no. 2, pp. 226-257 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

A class of integro-differential aggregation equations with nonlinear parabolic term $b(x,u)_t$ is considered on a compact Riemannian manifold $\mathscr M$. The divergence term in the equations can degenerate with loss of coercivity and may contain nonlinearities of variable order. The impermeability boundary condition on the boundary $\partial\mathscr M\times[0,T]$ of the cylinder $Q^T=\mathscr M\times[0,T]$ is satisfied if there are no external sources of ‘mass’ conservation, $\int_\mathscr Mb(x,u(x,t))\,d\nu=\mathrm{const}$. In a cylinder $Q^T$ for a sufficiently small $T$, the mixed problem for the aggregation equation is shown to have a bounded solution. The existence of a bounded solution of the problem in the cylinder $Q^\infty=\mathscr M\times[0,\infty)$ is proved under additional conditions. For equations of the form $b(x,u)_t=\Delta A(x,u)-\operatorname{div}(b(x,u)\mathscr G(u))+f(x,u)$ with the Laplace-Beltrami operator $\Delta$ and an integral operator $\mathscr G(u)$, the mixed problem is shown to have a unique bounded solution. Bibliography: 26 titles.
Keywords: aggregation equation on a manifold, uniqueness of a solution.
Mots-clés : existence of a solution
@article{SM_2020_211_2_a2,
     author = {V. F. Vil'danova},
     title = {Existence and uniqueness of a~weak solution of an integro-differential aggregation equation on {a~Riemannian} manifold},
     journal = {Sbornik. Mathematics},
     pages = {226--257},
     year = {2020},
     volume = {211},
     number = {2},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2020_211_2_a2/}
}
TY  - JOUR
AU  - V. F. Vil'danova
TI  - Existence and uniqueness of a weak solution of an integro-differential aggregation equation on a Riemannian manifold
JO  - Sbornik. Mathematics
PY  - 2020
SP  - 226
EP  - 257
VL  - 211
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/SM_2020_211_2_a2/
LA  - en
ID  - SM_2020_211_2_a2
ER  - 
%0 Journal Article
%A V. F. Vil'danova
%T Existence and uniqueness of a weak solution of an integro-differential aggregation equation on a Riemannian manifold
%J Sbornik. Mathematics
%D 2020
%P 226-257
%V 211
%N 2
%U http://geodesic.mathdoc.fr/item/SM_2020_211_2_a2/
%G en
%F SM_2020_211_2_a2
V. F. Vil'danova. Existence and uniqueness of a weak solution of an integro-differential aggregation equation on a Riemannian manifold. Sbornik. Mathematics, Tome 211 (2020) no. 2, pp. 226-257. http://geodesic.mathdoc.fr/item/SM_2020_211_2_a2/

[1] V. F. Vildanova, F. Kh. Mukminov, “Suschestvovanie slabogo resheniya integro-differentsialnogo uravneniya agregatsii”, Differentsialnye i funktsionalno-differentsialnye uravneniya, SMFN, 63, no. 4, RUDN, M., 2017, 557–572 | DOI | MR

[2] F. Punzo, “Well-posedness of the Cauchy problem for nonlinear parabolic equations with variable density in the hyperbolic space”, NoDEA Nonlinear Differential Equations Appl., 19 (2012), 485–501 | DOI | MR | Zbl

[3] J. L. Vázquez, “Fundamental solution and long time behavior of the porous medium equation in hyperbolic space”, J. Math. Pures Appl. (9), 104:3 (2015), 454–484 | DOI | MR | Zbl

[4] J. A. Carrillo, S. Hittmeir, B. Volzone, Y. Yao, “Nonlinear aggregation-diffusion equations: radial symmetry and long time asymptotics”, Invent. Math., 218:3 (2019), 889–977 ; (2016), arXiv: 1603.07767v1 | DOI | MR | Zbl

[5] E. F. Keller, L. A. Segel, “Initiation of slime mold aggregation viewed as an instability”, J. Theoret. Biol., 26:3 (1970), 399–415 | DOI | MR | Zbl

[6] P. H. Chavanis, C. Rosier, C. Sire, “Thermodynamics of self-gravitating systems”, Phys. Rev. E (3), 66:3 (2002), 036105, 19 pp. | DOI | MR

[7] P. Biler, T. Nadzieja, “Global and exploding solutions in a model of self-gravitating systems”, Rep. Math. Phys., 52:2 (2003), 205–225 | DOI | MR | Zbl

[8] P. H. Chavanis, J. Sommeria, R. Robert, “Statistical mechanics of two-dimensional vortices and collisionless stellar systems”, Astrophys. J., 471 (1996), 385–399 | DOI

[9] V. F. Vil'danova, “Existence and uniqueness of a weak solution of a nonlocal aggregation equation with degenerate diffusion of general form”, Sb. Math., 209:2 (2018), 206–221 | DOI | DOI | MR | Zbl

[10] A. L. Bertozzi, D. Slepcev, “Existence and uniqueness of solutions to an aggregation equation with degenerate diffusion”, Commun. Pure Appl. Anal., 9:6 (2010), 1617–1637 | DOI | MR | Zbl

[11] J. A. Carrillo, F. Hoffmann, E. Mainini, B. Volzone, “Ground states in the diffusion-dominated regime”, Calc. Var. Partial Differential Equations, 57:5 (2018), 127, 28 pp. | DOI | MR | Zbl

[12] V. Calvez, J. A. Carrillo, F. Hoffmann, “Equilibria of homogeneous functionals in the fair-competition regime”, Nonlinear Anal., 159 (2017), 85–128 | DOI | MR | Zbl

[13] F. Kh. Mukminov, “Uniqueness of the renormalized solution of an elliptic-parabolic problem in anisotropic Sobolev–Orlicz spaces”, Sb. Math., 208:8 (2017), 1187–1206 | DOI | DOI | MR | Zbl

[14] F. Kh. Mukminov, “Existence of a renormalized solution to an anisotropic parabolic problem with variable nonlinearity exponents”, Sb. Math., 209:5 (2018), 714–738 | DOI | DOI | MR | Zbl

[15] Yu. A. Alkhutov, V. V. Zhikov, “Existence and uniqueness theorems for solutions of parabolic equations with a variable nonlinearity exponent”, Sb. Math., 205:3 (2014), 307–318 | DOI | DOI | MR | Zbl

[16] V. N. Chetverikov, “Submersii v kategorii beskonechno prodolzhennykh differentsialnykh uravnenii”, Nauchnyi vestnik MGTU GA, 2013, no. 194(8), 88–97

[17] A. M. Vinogradov, I. S. Krasilschik, V. V. Lychagin, Vvedenie v geometriyu nelineinykh differentsialnykh uravnenii, Nauka, M., 1986, 336 pp. | MR | Zbl

[18] A. Grigor'yan, Heat kernel and analysis on manifolds, AMS/IP Stud. Adv. Math., 47, Amer. Math. Soc., Providence, RI; International Press, Boston, MA, 2009, xviii+482 pp. | MR | Zbl

[19] V. V. Zhikov, M. D. Surnachev, “On density of smooth functions in weighted Sobolev spaces with variable exponents”, St. Petersburg Math. J., 27:3 (2016), 415–436 | DOI | MR | Zbl

[20] O. A. Ladyženskaja, V. A. Solonnikov, N. N. Ural'ceva, Linear and quasi-linear equations of parabolic type, Transl. Math. Monogr., 23, Amer. Math. Soc., Providence, RI, 1968, xi+648 pp. | MR | MR | Zbl | Zbl

[21] S. L. Sobolev, Some applications of functional analysis in mathematical physics, Transl. Math. Monogr., 90, Amer. Math. Soc., Providence, RI, 1991, viii+286 pp. | MR | MR | Zbl | Zbl

[22] H. W. Alt, S. Luckhaus, “Quasilinear elliptic-parabolic differential equations”, Math. Z., 183:3 (1983), 311–341 | DOI | MR | Zbl

[23] J. L. Lions, Quelques méthodes de résolution des problèmes aux limites non linéaires, Dunod, Paris; Gauthier-Villars, Paris, 1969, xx+554 pp. | MR | MR | Zbl | Zbl

[24] F. Otto, “$L^1$-contraction and uniqueness for quasilinear elliptic-parabolic equations”, J. Differential Equations, 131:1 (1996), 20–38 | DOI | MR | Zbl

[25] H. Brezis, Analyse fonctionnelle. Théorie et applications, Collect. Math. Appl. Maîtrise, Masson, Paris, 1983, xiv+234 pp. | MR | Zbl

[26] J.-L. Lions, E. Magenes, Problèmes aux limites non homogènes et applications, v. 1, Travaux et Recherches Mathématiques, 17, Dunod, Paris, 1968, xx+372 pp. | MR | MR | Zbl | Zbl