Existence and uniqueness of a~weak solution of an integro-differential aggregation equation on a~Riemannian manifold
    
    
  
  
  
      
      
      
        
Sbornik. Mathematics, Tome 211 (2020) no. 2, pp. 226-257
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Math-Net.Ru
            
              			A class of integro-differential aggregation equations with nonlinear parabolic term $b(x,u)_t$ is considered on a compact Riemannian manifold $\mathscr M$. The divergence term in the equations can degenerate with loss of coercivity and may contain nonlinearities of variable order. The impermeability boundary condition on the boundary $\partial\mathscr M\times[0,T]$ of the cylinder $Q^T=\mathscr M\times[0,T]$ is satisfied if there are no external sources of ‘mass’ conservation, $\int_\mathscr Mb(x,u(x,t))\,d\nu=\mathrm{const}$. In a cylinder $Q^T$ for a sufficiently small $T$, the mixed problem for the aggregation equation is shown to have a bounded solution. The existence of a bounded solution of the problem in the cylinder $Q^\infty=\mathscr M\times[0,\infty)$ is proved under additional conditions. 
For equations of the form $b(x,u)_t=\Delta A(x,u)-\operatorname{div}(b(x,u)\mathscr G(u))+f(x,u)$ with the Laplace-Beltrami operator $\Delta$ and an integral operator $\mathscr G(u)$, the mixed problem is shown to have a unique bounded solution. 
Bibliography: 26 titles.
			
            
            
            
          
        
      
                  
                    
                    
                    
                        
Keywords: 
aggregation equation on a manifold, uniqueness of a solution.
Mots-clés : existence of a solution
                    
                  
                
                
                Mots-clés : existence of a solution
@article{SM_2020_211_2_a2,
     author = {V. F. Vil'danova},
     title = {Existence and uniqueness of a~weak solution of an integro-differential aggregation equation on {a~Riemannian} manifold},
     journal = {Sbornik. Mathematics},
     pages = {226--257},
     publisher = {mathdoc},
     volume = {211},
     number = {2},
     year = {2020},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2020_211_2_a2/}
}
                      
                      
                    TY - JOUR AU - V. F. Vil'danova TI - Existence and uniqueness of a~weak solution of an integro-differential aggregation equation on a~Riemannian manifold JO - Sbornik. Mathematics PY - 2020 SP - 226 EP - 257 VL - 211 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/SM_2020_211_2_a2/ LA - en ID - SM_2020_211_2_a2 ER -
%0 Journal Article %A V. F. Vil'danova %T Existence and uniqueness of a~weak solution of an integro-differential aggregation equation on a~Riemannian manifold %J Sbornik. Mathematics %D 2020 %P 226-257 %V 211 %N 2 %I mathdoc %U http://geodesic.mathdoc.fr/item/SM_2020_211_2_a2/ %G en %F SM_2020_211_2_a2
V. F. Vil'danova. Existence and uniqueness of a~weak solution of an integro-differential aggregation equation on a~Riemannian manifold. Sbornik. Mathematics, Tome 211 (2020) no. 2, pp. 226-257. http://geodesic.mathdoc.fr/item/SM_2020_211_2_a2/
