Existence and uniqueness of a~weak solution of an integro-differential aggregation equation on a~Riemannian manifold
Sbornik. Mathematics, Tome 211 (2020) no. 2, pp. 226-257

Voir la notice de l'article provenant de la source Math-Net.Ru

A class of integro-differential aggregation equations with nonlinear parabolic term $b(x,u)_t$ is considered on a compact Riemannian manifold $\mathscr M$. The divergence term in the equations can degenerate with loss of coercivity and may contain nonlinearities of variable order. The impermeability boundary condition on the boundary $\partial\mathscr M\times[0,T]$ of the cylinder $Q^T=\mathscr M\times[0,T]$ is satisfied if there are no external sources of ‘mass’ conservation, $\int_\mathscr Mb(x,u(x,t))\,d\nu=\mathrm{const}$. In a cylinder $Q^T$ for a sufficiently small $T$, the mixed problem for the aggregation equation is shown to have a bounded solution. The existence of a bounded solution of the problem in the cylinder $Q^\infty=\mathscr M\times[0,\infty)$ is proved under additional conditions. For equations of the form $b(x,u)_t=\Delta A(x,u)-\operatorname{div}(b(x,u)\mathscr G(u))+f(x,u)$ with the Laplace-Beltrami operator $\Delta$ and an integral operator $\mathscr G(u)$, the mixed problem is shown to have a unique bounded solution. Bibliography: 26 titles.
Keywords: aggregation equation on a manifold, uniqueness of a solution.
Mots-clés : existence of a solution
@article{SM_2020_211_2_a2,
     author = {V. F. Vil'danova},
     title = {Existence and uniqueness of a~weak solution of an integro-differential aggregation equation on {a~Riemannian} manifold},
     journal = {Sbornik. Mathematics},
     pages = {226--257},
     publisher = {mathdoc},
     volume = {211},
     number = {2},
     year = {2020},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2020_211_2_a2/}
}
TY  - JOUR
AU  - V. F. Vil'danova
TI  - Existence and uniqueness of a~weak solution of an integro-differential aggregation equation on a~Riemannian manifold
JO  - Sbornik. Mathematics
PY  - 2020
SP  - 226
EP  - 257
VL  - 211
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SM_2020_211_2_a2/
LA  - en
ID  - SM_2020_211_2_a2
ER  - 
%0 Journal Article
%A V. F. Vil'danova
%T Existence and uniqueness of a~weak solution of an integro-differential aggregation equation on a~Riemannian manifold
%J Sbornik. Mathematics
%D 2020
%P 226-257
%V 211
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SM_2020_211_2_a2/
%G en
%F SM_2020_211_2_a2
V. F. Vil'danova. Existence and uniqueness of a~weak solution of an integro-differential aggregation equation on a~Riemannian manifold. Sbornik. Mathematics, Tome 211 (2020) no. 2, pp. 226-257. http://geodesic.mathdoc.fr/item/SM_2020_211_2_a2/