Integrable billiard systems realize toric~foliations on lens spaces and the 3-torus
Sbornik. Mathematics, Tome 211 (2020) no. 2, pp. 201-225

Voir la notice de l'article provenant de la source Math-Net.Ru

An integrable billiard system on a book, a complex of several billiard sheets glued together along the common spine, is considered. Each sheet is a planar domain bounded by arcs of confocal quadrics; it is known that a billiard in such a domain is integrable. In a number of interesting special cases of such billiards the Fomenko-Zieschang invariants of Liouville equivalence (marked molecules $W^*$) turn out to describe nontrivial toric foliations on lens spaces and on the 3-torus, which are isoenergy manifolds for these billiards. Bibliography: 18 titles.
Keywords: integrable system, billiard system
Mots-clés : Liouville equivalence, Fomenko-Zieschang invariant.
@article{SM_2020_211_2_a1,
     author = {V. V. Vedyushkina},
     title = {Integrable billiard systems realize toric~foliations on lens spaces and the 3-torus},
     journal = {Sbornik. Mathematics},
     pages = {201--225},
     publisher = {mathdoc},
     volume = {211},
     number = {2},
     year = {2020},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2020_211_2_a1/}
}
TY  - JOUR
AU  - V. V. Vedyushkina
TI  - Integrable billiard systems realize toric~foliations on lens spaces and the 3-torus
JO  - Sbornik. Mathematics
PY  - 2020
SP  - 201
EP  - 225
VL  - 211
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SM_2020_211_2_a1/
LA  - en
ID  - SM_2020_211_2_a1
ER  - 
%0 Journal Article
%A V. V. Vedyushkina
%T Integrable billiard systems realize toric~foliations on lens spaces and the 3-torus
%J Sbornik. Mathematics
%D 2020
%P 201-225
%V 211
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SM_2020_211_2_a1/
%G en
%F SM_2020_211_2_a1
V. V. Vedyushkina. Integrable billiard systems realize toric~foliations on lens spaces and the 3-torus. Sbornik. Mathematics, Tome 211 (2020) no. 2, pp. 201-225. http://geodesic.mathdoc.fr/item/SM_2020_211_2_a1/