Integrable billiard systems realize toric foliations on lens spaces and the 3-torus
Sbornik. Mathematics, Tome 211 (2020) no. 2, pp. 201-225 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

An integrable billiard system on a book, a complex of several billiard sheets glued together along the common spine, is considered. Each sheet is a planar domain bounded by arcs of confocal quadrics; it is known that a billiard in such a domain is integrable. In a number of interesting special cases of such billiards the Fomenko-Zieschang invariants of Liouville equivalence (marked molecules $W^*$) turn out to describe nontrivial toric foliations on lens spaces and on the 3-torus, which are isoenergy manifolds for these billiards. Bibliography: 18 titles.
Keywords: integrable system, billiard system
Mots-clés : Liouville equivalence, Fomenko-Zieschang invariant.
@article{SM_2020_211_2_a1,
     author = {V. V. Vedyushkina},
     title = {Integrable billiard systems realize toric~foliations on lens spaces and the 3-torus},
     journal = {Sbornik. Mathematics},
     pages = {201--225},
     year = {2020},
     volume = {211},
     number = {2},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2020_211_2_a1/}
}
TY  - JOUR
AU  - V. V. Vedyushkina
TI  - Integrable billiard systems realize toric foliations on lens spaces and the 3-torus
JO  - Sbornik. Mathematics
PY  - 2020
SP  - 201
EP  - 225
VL  - 211
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/SM_2020_211_2_a1/
LA  - en
ID  - SM_2020_211_2_a1
ER  - 
%0 Journal Article
%A V. V. Vedyushkina
%T Integrable billiard systems realize toric foliations on lens spaces and the 3-torus
%J Sbornik. Mathematics
%D 2020
%P 201-225
%V 211
%N 2
%U http://geodesic.mathdoc.fr/item/SM_2020_211_2_a1/
%G en
%F SM_2020_211_2_a1
V. V. Vedyushkina. Integrable billiard systems realize toric foliations on lens spaces and the 3-torus. Sbornik. Mathematics, Tome 211 (2020) no. 2, pp. 201-225. http://geodesic.mathdoc.fr/item/SM_2020_211_2_a1/

[1] V. V. Kozlov, D. V. Treshchev, Billiards. A genetic introduction to the dynamics of systems with impacts, Transl. Math. Monogr., 89, Amer. Math. Soc., Providence, RI, 1991, viii+171 pp. | MR | MR | Zbl | Zbl

[2] V. Dragović, M. Radnović, “Bifurcations of Liouville tori in elliptical billiards”, Regul. Chaotic Dyn., 14:4-5 (2009), 479–494 | DOI | MR | Zbl

[3] V. Dragović, M. Radnović, Poncelet porisms and beyond. Integrable billiards, hyperelliptic Jacobians and pencils of quadrics, Front. Math., Birkhäuser/Springer Basel AG, Basel, 2011, viii+293 pp. | DOI | MR | Zbl

[4] V. V. Fokicheva, “Description of singularities for system “billiard in an ellipse” ”, Moscow Univ. Math. Bull., 67:5-6 (2012), 217–220 | DOI | MR | Zbl

[5] V. V. Fokicheva, “Description of singularities for billiard systems bounded by confocal ellipses or hyperbolas”, Moscow Univ. Math. Bull., 69:4 (2014), 148–158 | DOI | MR | Zbl

[6] V. V. Fokicheva, “A topological classification of billiards in locally planar domains bounded by arcs of confocal quadrics”, Sb. Math., 206:10 (2015), 1463–1507 | DOI | DOI | MR | Zbl

[7] V. V. Vedyushkina, A. T. Fomenko, “Integrable topological billiards and equivalent dynamical systems”, Izv. Math., 81:4 (2017), 688–733 | DOI | DOI | MR | Zbl

[8] V. V. Vedyushkina, “The Liouville foliation of nonconvex topological billiards”, Dokl. Math., 97:1 (2018), 1–5 | DOI | DOI | MR | Zbl

[9] V. V. Vedyushkina, “The Fomenko–Zieschang invariants of nonconvex topological billiards”, Sb. Math., 210:3 (2019), 310–363 | DOI | DOI | MR | Zbl

[10] V. V. Vedyushkina, I. S. Kharcheva, “Billiard books model all three-dimensional bifurcations of integrable Hamiltonian systems”, Sb. Math., 209:12 (2018), 1690–1727 | DOI | DOI | MR | Zbl

[11] V. V. Vedyushkina, A. T. Fomenko, I. S. Kharcheva, “Modeling nondegenerate bifurcations of closures of solutions for integrable systems with two degrees of freedom by integrable topological billiards”, Dokl. Math., 97:2 (2018), 174–176 | DOI | DOI | MR | Zbl

[12] A. V. Bolsinov, A. T. Fomenko, Integrable Hamiltonian systems. Geometry, topology, classification, Chapman Hall/CRC, Boca Raton, FL, 2004, xvi+730 pp. | DOI | MR | MR | Zbl | Zbl

[13] V. V. Fokicheva, A. T. Fomenko, “Integrable billiards model important integrable cases of rigid body dynamics”, Dokl. Math., 92:3 (2015), 682–684 | DOI | DOI | MR | Zbl

[14] V. V. Vedyushkina (Fokicheva), A. T. Fomenko, “Integrable geodesic flows on orientable two-dimensional surfaces and topological billiards”, Izv. Math., 83 (2019), in press | DOI | DOI

[15] A. T. Fomenko, H. Zieschang, “On typical topological properties of integrable Hamiltonian systems”, Math. USSR-Izv., 32:2 (1989), 385–412 | DOI | MR | Zbl

[16] A. T. Fomenko, “The symplectic topology of completely integrable Hamiltonian systems”, Russian Math. Surveys, 44:1 (1989), 181–219 | DOI | MR | Zbl

[17] A. T. Fomenko, H. Zieschang, “A topological invariant and a criterion for the equivalence of integrable Hamiltonian systems with two degrees of freedom”, Math. USSR-Izv., 36:3 (1991), 567–596 | DOI | MR | Zbl

[18] G. D. Birkhoff, Dynamical systems, Amer. Math. Soc. Colloq. Publ., 9, Amer. Math. Soc., New York, 1927, viii+295 pp. | MR | Zbl | Zbl