Integrable billiard systems realize toric~foliations on lens spaces and the 3-torus
    
    
  
  
  
      
      
      
        
Sbornik. Mathematics, Tome 211 (2020) no. 2, pp. 201-225
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Math-Net.Ru
            
              			An integrable billiard system on a book, a complex of several billiard sheets glued together along the common spine, is considered. Each sheet is a planar domain bounded by arcs of confocal quadrics; it is known that a billiard in such a domain is integrable. In a number of interesting special cases of such billiards the Fomenko-Zieschang invariants of Liouville equivalence (marked molecules $W^*$) turn out to describe nontrivial toric foliations on lens spaces and on the 3-torus, which are isoenergy manifolds for these billiards. 
Bibliography: 18 titles.
			
            
            
            
          
        
      
                  
                    
                    
                    
                        
Keywords: 
integrable system, billiard system
Mots-clés : Liouville equivalence, Fomenko-Zieschang invariant.
                    
                  
                
                
                Mots-clés : Liouville equivalence, Fomenko-Zieschang invariant.
@article{SM_2020_211_2_a1,
     author = {V. V. Vedyushkina},
     title = {Integrable billiard systems realize toric~foliations on lens spaces and the 3-torus},
     journal = {Sbornik. Mathematics},
     pages = {201--225},
     publisher = {mathdoc},
     volume = {211},
     number = {2},
     year = {2020},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2020_211_2_a1/}
}
                      
                      
                    V. V. Vedyushkina. Integrable billiard systems realize toric~foliations on lens spaces and the 3-torus. Sbornik. Mathematics, Tome 211 (2020) no. 2, pp. 201-225. http://geodesic.mathdoc.fr/item/SM_2020_211_2_a1/