\'Etale monodromy and rational equivalence for $1$-cycles on cubic hypersurfaces in~$\mathbb P^5$
Sbornik. Mathematics, Tome 211 (2020) no. 2, pp. 161-200

Voir la notice de l'article provenant de la source Math-Net.Ru

Let $k$ be an uncountable algebraically closed field of characteristic $0$, and let $X$ be a smooth projective connected variety of dimension $2p$, embedded into $\mathbb P^m$ over $k$. Let $Y$ be a hyperplane section of $X$, and let $A^p(Y)$ and $A^{p+1}(X)$ be the groups of algebraically trivial algebraic cycles of codimension $p$ and $p+1$ modulo rational equivalence on $Y$ and $X$, respectively. Assume that, whenever $Y$ is smooth, the group $A^p(Y)$ is regularly parametrized by an abelian variety $A$ and coincides with the subgroup of degree $0$ classes in the Chow group $\operatorname{CH}^p(Y)$. We prove that the kernel of the push-forward homomorphism from $A^p(Y)$ to $A^{p+1}(X)$ is the union of a countable collection of shifts of a certain abelian subvariety $A_0$ inside $A$. For a very general hyperplane section $Y$ either $A_0=0$ or $A_0$ coincides with an abelian subvariety $A_1$ in $A$ whose tangent space is the group of vanishing cycles $H^{2p-1}(Y)_\mathrm{van}$. Then we apply these general results to sections of a smooth cubic fourfold in $\mathbb P^5$. Bibliography: 33 titles.
Keywords: Chow schemes, cubic fourfold hypersurfaces.
Mots-clés : algebraic cycles, $l$-adic étale monodromy, Picard-Lefschetz formulae
@article{SM_2020_211_2_a0,
     author = {K. Banerjee and V. Guletskiǐ},
     title = {\'Etale monodromy and rational equivalence for $1$-cycles on cubic hypersurfaces in~$\mathbb P^5$},
     journal = {Sbornik. Mathematics},
     pages = {161--200},
     publisher = {mathdoc},
     volume = {211},
     number = {2},
     year = {2020},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2020_211_2_a0/}
}
TY  - JOUR
AU  - K. Banerjee
AU  - V. Guletskiǐ
TI  - \'Etale monodromy and rational equivalence for $1$-cycles on cubic hypersurfaces in~$\mathbb P^5$
JO  - Sbornik. Mathematics
PY  - 2020
SP  - 161
EP  - 200
VL  - 211
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SM_2020_211_2_a0/
LA  - en
ID  - SM_2020_211_2_a0
ER  - 
%0 Journal Article
%A K. Banerjee
%A V. Guletskiǐ
%T \'Etale monodromy and rational equivalence for $1$-cycles on cubic hypersurfaces in~$\mathbb P^5$
%J Sbornik. Mathematics
%D 2020
%P 161-200
%V 211
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SM_2020_211_2_a0/
%G en
%F SM_2020_211_2_a0
K. Banerjee; V. Guletskiǐ. \'Etale monodromy and rational equivalence for $1$-cycles on cubic hypersurfaces in~$\mathbb P^5$. Sbornik. Mathematics, Tome 211 (2020) no. 2, pp. 161-200. http://geodesic.mathdoc.fr/item/SM_2020_211_2_a0/