Harmonic analysis on the rank-$2$ value group of a~two-dimensional local field
Sbornik. Mathematics, Tome 211 (2020) no. 1, pp. 115-160

Voir la notice de l'article provenant de la source Math-Net.Ru

In this work we construct a harmonic analysis on free Abelian groups of rank $2$, namely: we construct and investigate spaces of functions and distributions, Fourier transforms and actions of discrete and extended discrete Heisenberg groups. In the case of the rank-$2$ value group of a two-dimensional local field with finite last residue field we connect this harmonic analysis with harmonic analysis on the two-dimensional local field, where the latter harmonic analysis was constructed in earlier works by the authors. Bibliography: 15 titles.
Keywords: two-dimensional local field, value group, harmonic analysis, discrete Heisenberg groups.
Mots-clés : Fourier transform
@article{SM_2020_211_1_a3,
     author = {D. V. Osipov and A. N. Parshin},
     title = {Harmonic analysis on the rank-$2$ value group of a~two-dimensional local field},
     journal = {Sbornik. Mathematics},
     pages = {115--160},
     publisher = {mathdoc},
     volume = {211},
     number = {1},
     year = {2020},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2020_211_1_a3/}
}
TY  - JOUR
AU  - D. V. Osipov
AU  - A. N. Parshin
TI  - Harmonic analysis on the rank-$2$ value group of a~two-dimensional local field
JO  - Sbornik. Mathematics
PY  - 2020
SP  - 115
EP  - 160
VL  - 211
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SM_2020_211_1_a3/
LA  - en
ID  - SM_2020_211_1_a3
ER  - 
%0 Journal Article
%A D. V. Osipov
%A A. N. Parshin
%T Harmonic analysis on the rank-$2$ value group of a~two-dimensional local field
%J Sbornik. Mathematics
%D 2020
%P 115-160
%V 211
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SM_2020_211_1_a3/
%G en
%F SM_2020_211_1_a3
D. V. Osipov; A. N. Parshin. Harmonic analysis on the rank-$2$ value group of a~two-dimensional local field. Sbornik. Mathematics, Tome 211 (2020) no. 1, pp. 115-160. http://geodesic.mathdoc.fr/item/SM_2020_211_1_a3/