Harmonic analysis on the rank-$2$ value group of a two-dimensional local field
Sbornik. Mathematics, Tome 211 (2020) no. 1, pp. 115-160
Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

In this work we construct a harmonic analysis on free Abelian groups of rank $2$, namely: we construct and investigate spaces of functions and distributions, Fourier transforms and actions of discrete and extended discrete Heisenberg groups. In the case of the rank-$2$ value group of a two-dimensional local field with finite last residue field we connect this harmonic analysis with harmonic analysis on the two-dimensional local field, where the latter harmonic analysis was constructed in earlier works by the authors. Bibliography: 15 titles.
Keywords: two-dimensional local field, value group, harmonic analysis, discrete Heisenberg groups.
Mots-clés : Fourier transform
@article{SM_2020_211_1_a3,
     author = {D. V. Osipov and A. N. Parshin},
     title = {Harmonic analysis on the rank-$2$ value group of a~two-dimensional local field},
     journal = {Sbornik. Mathematics},
     pages = {115--160},
     year = {2020},
     volume = {211},
     number = {1},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2020_211_1_a3/}
}
TY  - JOUR
AU  - D. V. Osipov
AU  - A. N. Parshin
TI  - Harmonic analysis on the rank-$2$ value group of a two-dimensional local field
JO  - Sbornik. Mathematics
PY  - 2020
SP  - 115
EP  - 160
VL  - 211
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/SM_2020_211_1_a3/
LA  - en
ID  - SM_2020_211_1_a3
ER  - 
%0 Journal Article
%A D. V. Osipov
%A A. N. Parshin
%T Harmonic analysis on the rank-$2$ value group of a two-dimensional local field
%J Sbornik. Mathematics
%D 2020
%P 115-160
%V 211
%N 1
%U http://geodesic.mathdoc.fr/item/SM_2020_211_1_a3/
%G en
%F SM_2020_211_1_a3
D. V. Osipov; A. N. Parshin. Harmonic analysis on the rank-$2$ value group of a two-dimensional local field. Sbornik. Mathematics, Tome 211 (2020) no. 1, pp. 115-160. http://geodesic.mathdoc.fr/item/SM_2020_211_1_a3/

[1] E. Arbarello, C. De Concini, V. G. Kac, “The infinite wedge representation and the reciprocity law for algebraic curves”, Theta functions – Bowdoin 1987, Part 1 (Brunswick, ME, 1987), Proc. Sympos. Pure Math., 49, Part 1, Amer. Math. Soc., Providence, RI, 1989, 171–190 | MR | Zbl

[2] L. Breen, “Monoidal categories and multiextensions”, Compositio Math., 117:3 (1999), 295–335 | DOI | MR | Zbl

[3] J.-L. Brylinski, “Central extensions and reciprocity laws”, Cahiers Topologie Géom. Différentielle Catég., 38:3 (1997), 193–215 | MR | Zbl

[4] K. Kato, “A generalization of local class field theory by using $K$-groups. I”, J. Fac. Sci. Univ. Tokyo Sect. IA Math., 26:2 (1979), 303–376 | MR | Zbl

[5] D. V. Osipov, “$n$-dimensional local fields and adeles on $n$-dimensional schemes”, Surveys in contemporary mathematics, London Math. Soc. Lecture Note Ser., 347, Cambridge Univ. Press, Cambridge, 2008, 131–164 | MR | Zbl

[6] D. V. Osipov, A. N. Parshin, “Harmonic analysis on local fields and adelic spaces. I”, Izv. Math., 72:5 (2008), 915–976 | DOI | DOI | MR | Zbl

[7] D. V. Osipov, A. N. Parshin, “Harmonic analysis on local fields and adelic spaces. II”, Izv. Math., 75:4 (2011), 749–814 | DOI | DOI | MR | Zbl

[8] D. V. Osipov, A. N. Parshin, “Representations of the discrete Heisenberg group on distribution spaces of two-dimensional local fields”, Proc. Steklov Inst. Math., 292 (2016), 185–201 | DOI | DOI | MR | Zbl

[9] A. N. Parshin, “Vector bundles and arithmetical groups. I”, Proc. Steklov Inst. Math., 208 (1995), 212–233 | MR | Zbl

[10] A. N. Parshin, “Higher dimensional local fields and $L$-functions”, Invitation to higher local fields (Münster, 1999), Geom. Topol. Monogr., 3, Geom. Topol. Publ., Coventry, 2000, 199–213 | DOI | MR | Zbl

[11] A. N. Parshin, “Representations of higher adelic groups and arithmetic”, Proceedings of the international congress of mathematicians (Hyderabad, 2010), v. 1, Plenary lectures and ceremonies, Hindustan Book Agency, New Delhi, 2010, 362–392 | MR | Zbl

[12] A. N. Parshin, “Notes on the Poisson formula”, St. Petersburg Math. J., 23:5 (2012), 781–818 | DOI | MR | Zbl

[13] A. N. Parshin, “A holomorphic version of the Tate–Iwasawa method for unramified $L$-functions”, Sb. Math., 205:10 (2014), 1473–1491 | DOI | DOI | MR | Zbl

[14] A. Pressley, G. Segal, Loop groups, Oxford Math. Monogr., 2nd rev. ed., Oxford Univ. Press, New York, 1988, viii+318 pp. | MR | Zbl | Zbl

[15] A. Yekutieli, An explicit construction of the Grothendieck residue complex, With an appendix by P. Sastry, Astérisque, 208, Soc. Math. France, Paris, 1992, 127 pp. | MR | Zbl