The distribution of singular points of the sum of a series of exponential monomials on the boundary of its domain of convergence
Sbornik. Mathematics, Tome 211 (2020) no. 1, pp. 55-114 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The problem of the distribution of the singular points of the sum of a series of exponential monomials on the boundary of the domain of convergence of the series is considered. Sufficient conditions are found for a singular point to exist on a prescribed arc on the boundary; these are stated in purely geometric terms. The singular point exists due to simple relations between the maximum density of the exponents of the series in an angle and the length of the arc on the boundary of the domain of convergence that corresponds to this angle. Necessary conditions for a singular point to exist on a prescribed arc on the boundary are also obtained. They are stated in terms of the minimum density of the exponents in an angle and the length of the arc. On this basis, for sequences with density, criteria are established for the existence of a singular point on a prescribed arc on the boundary of the domain of convergence. Bibliography: 27 titles.
Keywords: series of exponential monomials, singular point, density of a sequence, entire function.
Mots-clés : domain of convergence
@article{SM_2020_211_1_a2,
     author = {A. S. Krivosheev and O. A. Krivosheeva},
     title = {The distribution of singular points of the sum of a~series of exponential monomials on the boundary of its domain of convergence},
     journal = {Sbornik. Mathematics},
     pages = {55--114},
     year = {2020},
     volume = {211},
     number = {1},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2020_211_1_a2/}
}
TY  - JOUR
AU  - A. S. Krivosheev
AU  - O. A. Krivosheeva
TI  - The distribution of singular points of the sum of a series of exponential monomials on the boundary of its domain of convergence
JO  - Sbornik. Mathematics
PY  - 2020
SP  - 55
EP  - 114
VL  - 211
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/SM_2020_211_1_a2/
LA  - en
ID  - SM_2020_211_1_a2
ER  - 
%0 Journal Article
%A A. S. Krivosheev
%A O. A. Krivosheeva
%T The distribution of singular points of the sum of a series of exponential monomials on the boundary of its domain of convergence
%J Sbornik. Mathematics
%D 2020
%P 55-114
%V 211
%N 1
%U http://geodesic.mathdoc.fr/item/SM_2020_211_1_a2/
%G en
%F SM_2020_211_1_a2
A. S. Krivosheev; O. A. Krivosheeva. The distribution of singular points of the sum of a series of exponential monomials on the boundary of its domain of convergence. Sbornik. Mathematics, Tome 211 (2020) no. 1, pp. 55-114. http://geodesic.mathdoc.fr/item/SM_2020_211_1_a2/

[1] G. L. Lunts, “O ryadakh tipa Teilora–Dirikhle”, Izv. AN Arm. SSR, 14:2 (1961), 7–16 | MR | Zbl

[2] O. A. Krivosheyeva, “The convergence domain for series of exponential monomials”, Ufa Math. J., 3:2 (2011), 42–55 | MR | Zbl

[3] A. F. Leontev, Tselye funktsii. Ryady eksponent, Nauka, M., 1983, 176 pp. | MR | Zbl

[4] L. Bieberbach, Analytische Fortsetzung, Ergeb. Math. Grenzgeb. (N.F.), 3, Springer-Verlag, Berlin–Göttingen–Heidelberg, 1955, ii+168 pp. | MR | MR | Zbl | Zbl

[5] J. Hadamard, “Essai sur l'étude des fonctions données par leur développement de Taylor”, J. Math. Pures Appl. (4), 8 (1892), 101–186 | Zbl

[6] E. Fabry, “Sur les points singuliers d'une fonction donnée par son développement en série et l'impossibilité du prolongement analytique dans des cas très généraux”, Ann. Sci. École Norm. Sup. (3), 13 (1896), 367–399 | DOI | MR | Zbl

[7] G. Pólya, “Untersuchungen über Lücken und Singularitäten von Potenzreihen”, Math. Z., 29:1 (1929), 549–640 | DOI | MR | Zbl

[8] W. H. J. Fucks, “On the growth of functions of mean type”, Proc. Edinburgh Math. Soc. (2), 9:2 (1954), 53–70 | DOI | MR | Zbl

[9] P. Malliavin, “Sur la croissance radiale d'une fonction méromorphe”, Illinois J. Math., 1:2 (1957), 259–296 | DOI | MR | Zbl

[10] P. Koosis, The logarithmic integral, v. II, Cambridge Stud. Adv. Math., 21, Cambridge Univ. Press, Cambridge, 1992, xxvi+574 pp. | DOI | MR | Zbl

[11] G. Pólya, “Über die Existenz unendlich vieler singulärer Punkte auf der Konvergenzgeraden gewisser Dirichletscher Reihen”, Sitzungsber. Preuß. Akad. Wiss., 1923 (1923), 45–50 | Zbl

[12] G. Pólya, “Eine Verallgemeinerung des Fabryschen Lückensatzes”, Nachr. Ges. Wiss. Göttingen, Math.-naturwiss. Kl., 1927 (1927), 187–195 | Zbl

[13] A. F. Leontev, Ryady eksponent, Nauka, M., 1976, 536 pp. | MR | Zbl

[14] V. Bernstein, Leçons sur les progrès récents de la théorie des séries de Dirichlet, Gauthier-Villars, Paris, 1933, xiv+320 pp. | Zbl

[15] O. A. Krivosheeva, A. S. Krivosheev, “Singular points of the sum of a Dirichlet series on the convergence line”, Funct. Anal. Appl., 49:2 (2015), 122–134 | DOI | DOI | MR | Zbl

[16] A. S. Krivosheev, “A fundamental principle for invariant subspaces in convex domains”, Izv. Math., 68:2 (2004), 291–353 | DOI | DOI | MR | Zbl

[17] A. Ostrowski, “Über die analytische Fortsetzung von Taylorschen und Dirichletschen Reihen”, Math. Ann., 129 (1955), 1–43 | DOI | MR | Zbl

[18] O. A. Krivosheyeva, “Singular points of the sum of a series of exponential monomials on the boundary of the convergence domain”, St. Petersburg Math. J., 23:2 (2012), 321–350 | DOI | MR | Zbl

[19] B. Ja. Levin, Distribution of zeros of entire functions, Transl. Math. Monogr., 5, Amer. Math. Soc., Providence, RI, 1964, viii+493 pp. | MR | MR | Zbl | Zbl

[20] A. I. Abdulnagimov, A. S. Krivosheyev, “Regularly distributed subsets in the complex plane”, St. Petersburg Math. J., 28:4 (2017), 433–464 | DOI | MR | Zbl

[21] A. A. Kondratyuk, “Tselye funktsii s konechnoi maksimalnoi plotnostyu nulei. I”, Teoriya funktsii, funktsionalnyi analiz i ikh prilozheniya, 10, Izd-vo Khark. un-ta, Kharkov, 1970, 57–70 | MR | Zbl

[22] O. A. Krivosheeva, A. S. Krivosheev, “A criterion for the fundamental principle to hold for invariant subspaces on bounded convex domains in the complex plane”, Funct. Anal. Appl., 46:4 (2012), 249–261 | DOI | DOI | MR | Zbl

[23] V. V. Napalkov, Uravneniya svertki v mnogomernykh prostranstvakh, Nauka, M., 1982, 240 pp. | MR | Zbl

[24] I. F. Krasichkov-Ternovskii, “Invariant subspaces of analytic functions. III. On the extension of spectral synthesis”, Math. USSR-Sb., 17:3 (1972), 327–348 | DOI | MR | Zbl

[25] A. S. Krivosheev, O. A. Krivosheeva, “Fundamental principle and a basis in invariant subspaces”, Math. Notes, 99:5 (2016), 685–696 | DOI | DOI | MR | Zbl

[26] A. S. Krivosheev, O. A. Krivosheyeva, “Basis in an invariant space of entire functions”, St. Petersburg Math. J., 27:2 (2016), 273–316 | DOI | MR | Zbl

[27] A. S. Krivosheyev, “An almost exponential sequence of exponential polynomials”, Ufa Math. J., 4:1 (2012), 82–99 | MR