First integrals and asymptotic trajectories
Sbornik. Mathematics, Tome 211 (2020) no. 1, pp. 29-54 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We discuss the relationship between the singular points of an autonomous system of differential equations and the critical points of its first integrals. Applying the well-known Splitting Lemma, we introduce local coordinates in which the first integral takes a “canonical” form. These coordinates make it possible to introduce a quasihomogeneous structure in some neighbourhood of any singular point and so to prove general theorems on the existence of asymptotic trajectories which go into or out of that singular point. We consider quasihomogeneous truncations of the original system of differential equations and show that if the singular point is isolated, the quasihomogeneous system is Hamiltonian. For a general mechanical system with two degrees of freedom, we prove a theorem on the instability of an equilibrium when it is neither a local minimum nor a local maximum of the potential energy. Bibliography: 21 titles.
Keywords: splitting lemma, quasihomogeneous system, asymptotic trajectory, Hamiltonian system, gyroscopic stabilization.
@article{SM_2020_211_1_a1,
     author = {V. V. Kozlov},
     title = {First integrals and asymptotic trajectories},
     journal = {Sbornik. Mathematics},
     pages = {29--54},
     year = {2020},
     volume = {211},
     number = {1},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2020_211_1_a1/}
}
TY  - JOUR
AU  - V. V. Kozlov
TI  - First integrals and asymptotic trajectories
JO  - Sbornik. Mathematics
PY  - 2020
SP  - 29
EP  - 54
VL  - 211
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/SM_2020_211_1_a1/
LA  - en
ID  - SM_2020_211_1_a1
ER  - 
%0 Journal Article
%A V. V. Kozlov
%T First integrals and asymptotic trajectories
%J Sbornik. Mathematics
%D 2020
%P 29-54
%V 211
%N 1
%U http://geodesic.mathdoc.fr/item/SM_2020_211_1_a1/
%G en
%F SM_2020_211_1_a1
V. V. Kozlov. First integrals and asymptotic trajectories. Sbornik. Mathematics, Tome 211 (2020) no. 1, pp. 29-54. http://geodesic.mathdoc.fr/item/SM_2020_211_1_a1/

[1] V. V. Kozlov, “Linear systems with a quadratic integral”, J. Appl. Math. Mech., 56:6 (1992), 803–809 | DOI | MR | Zbl

[2] V. V. Kozlov, A. A. Karapetyan, “On the stability degree”, Differ. Equ., 41:2 (2005), 195–201 | DOI | MR | Zbl

[3] V. I. Arnol'd, V. A. Vasil'ev, V. V. Goryunov, O. V. Lyashko, “Singularities. Local and global theory”, Dynamical systems. VI. Singularity theory I, Encyclopaedia Math. Sci., 6, Springer-Verlag, Berlin, 1993, 1–245 | MR | MR | Zbl

[4] T. Poston, I. Stewart, Catastrophe theory and its applications, Surveys Reference Works Math., 2, Pitman, London–San Francisco, CA–Melbourne, 1978, xviii+491 pp. | MR | MR | Zbl | Zbl

[5] V. V. Kozlov, “On the instability of equilibria of conservative systems under typical degenerations”, Differ. Equ., 44:8 (2008), 1064–1071 | DOI | MR | Zbl

[6] J. Williamson, “An algebraic problem involving the involutory integrals of linear dynamical systems”, Amer. J. Math., 62 (1940), 881–911 | DOI | MR | Zbl

[7] H. Kocak, “Linear Hamiltonian systems are integrable with quadratics”, J. Math. Phys., 23:12 (1982), 2375–2380 | DOI | MR | Zbl

[8] V. V. Kozlov, “Linear Hamiltonian systems: quadratic integrals, singular subspaces and stability”, Regul. Chaotic Dyn., 23:1 (2018), 26–46 | DOI | MR | Zbl

[9] V. V. Kozlov, S. D. Furta, Asymptotic solutions of strongly nonlinear systems of differential equations, Springer Monogr. Math., Springer, Heidelberg, 2013, xx+262 pp. | DOI | MR | MR | Zbl | Zbl

[10] A. M. Molčanov, “Subdivision of motions and asymptotic methods in the theory of nonlinear oscillations”, Soviet Math. Dokl., 2 (1961), 162–165 | MR | Zbl

[11] L. G. Khazin, È. È Shnol', Stability of critical equilibrium states, Nonlinear Sci. Theory Appl., Manchester Univ. Press, Manchester, 1991, xii+208 pp. | MR | MR | Zbl | Zbl

[12] A. N. Kuznetsov, “Existence of solutions entering at a singular point of an autonomous system having a formal solution”, Funct. Anal. Appl., 23:4 (1989), 308–317 | DOI | MR | Zbl

[13] V. V. Kozlov, “Asymptotic solutions of equations of classical mechanics”, J. Appl. Math. Mech., 46:4 (1982), 454–457 | DOI | MR | Zbl

[14] S. Bolotin, P. Negrini, “Asymptotic solutions of Lagrangian systems with gyroscopic forces”, NoDEA Nonlinear Differential Equations Appl., 2:4 (1995), 417–444 | DOI | MR | Zbl

[15] M. Brunella, “Instability of equilibria in dimension three”, Ann. Inst. Fourier (Grenoble), 48:5 (1998), 1345–1357 | DOI | MR | Zbl

[16] V. V. Kozlov, D. V. Treschev, “Instability, asymptotic trajectories and dimension the phase space”, Mosc. Math. J., 18:4 (2018), 681–692 | MR | Zbl

[17] V. V. Kozlov, D. V. Treschev, “Instability of isolated equilibria of dynamical systems with invariant measure in spaces of odd dimension”, Math. Notes, 65:5 (1999), 565–570 | DOI | DOI | MR | Zbl

[18] C. L. Siegel, J. K. Moser, Lectures on celestial mechanics, Grundlehren Math. Wiss., 187, Springer-Verlag, New York–Heidelberg, 1971, xii+290 pp. | DOI | MR | Zbl

[19] V. V. Kozlov, “Gyroscopic stabilization of degenerate equilibria and the topology of real algebraic varieties”, Dokl. Math., 77:3 (2008), 412–415 | DOI | MR | Zbl

[20] H. Poincaré, “Sur les formes cubiques ternaires et quaternaires”, J. École Polytech., 50 (1883), 199–253 | MR | Zbl | Zbl

[21] H. Matsumura, P. Monsky, “On the automorphisms of hypersurfaces”, J. Math. Kyoto Univ., 3:3 (1963/1964), 347–361 | DOI | MR | Zbl