@article{SM_2020_211_1_a1,
author = {V. V. Kozlov},
title = {First integrals and asymptotic trajectories},
journal = {Sbornik. Mathematics},
pages = {29--54},
year = {2020},
volume = {211},
number = {1},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SM_2020_211_1_a1/}
}
V. V. Kozlov. First integrals and asymptotic trajectories. Sbornik. Mathematics, Tome 211 (2020) no. 1, pp. 29-54. http://geodesic.mathdoc.fr/item/SM_2020_211_1_a1/
[1] V. V. Kozlov, “Linear systems with a quadratic integral”, J. Appl. Math. Mech., 56:6 (1992), 803–809 | DOI | MR | Zbl
[2] V. V. Kozlov, A. A. Karapetyan, “On the stability degree”, Differ. Equ., 41:2 (2005), 195–201 | DOI | MR | Zbl
[3] V. I. Arnol'd, V. A. Vasil'ev, V. V. Goryunov, O. V. Lyashko, “Singularities. Local and global theory”, Dynamical systems. VI. Singularity theory I, Encyclopaedia Math. Sci., 6, Springer-Verlag, Berlin, 1993, 1–245 | MR | MR | Zbl
[4] T. Poston, I. Stewart, Catastrophe theory and its applications, Surveys Reference Works Math., 2, Pitman, London–San Francisco, CA–Melbourne, 1978, xviii+491 pp. | MR | MR | Zbl | Zbl
[5] V. V. Kozlov, “On the instability of equilibria of conservative systems under typical degenerations”, Differ. Equ., 44:8 (2008), 1064–1071 | DOI | MR | Zbl
[6] J. Williamson, “An algebraic problem involving the involutory integrals of linear dynamical systems”, Amer. J. Math., 62 (1940), 881–911 | DOI | MR | Zbl
[7] H. Kocak, “Linear Hamiltonian systems are integrable with quadratics”, J. Math. Phys., 23:12 (1982), 2375–2380 | DOI | MR | Zbl
[8] V. V. Kozlov, “Linear Hamiltonian systems: quadratic integrals, singular subspaces and stability”, Regul. Chaotic Dyn., 23:1 (2018), 26–46 | DOI | MR | Zbl
[9] V. V. Kozlov, S. D. Furta, Asymptotic solutions of strongly nonlinear systems of differential equations, Springer Monogr. Math., Springer, Heidelberg, 2013, xx+262 pp. | DOI | MR | MR | Zbl | Zbl
[10] A. M. Molčanov, “Subdivision of motions and asymptotic methods in the theory of nonlinear oscillations”, Soviet Math. Dokl., 2 (1961), 162–165 | MR | Zbl
[11] L. G. Khazin, È. È Shnol', Stability of critical equilibrium states, Nonlinear Sci. Theory Appl., Manchester Univ. Press, Manchester, 1991, xii+208 pp. | MR | MR | Zbl | Zbl
[12] A. N. Kuznetsov, “Existence of solutions entering at a singular point of an autonomous system having a formal solution”, Funct. Anal. Appl., 23:4 (1989), 308–317 | DOI | MR | Zbl
[13] V. V. Kozlov, “Asymptotic solutions of equations of classical mechanics”, J. Appl. Math. Mech., 46:4 (1982), 454–457 | DOI | MR | Zbl
[14] S. Bolotin, P. Negrini, “Asymptotic solutions of Lagrangian systems with gyroscopic forces”, NoDEA Nonlinear Differential Equations Appl., 2:4 (1995), 417–444 | DOI | MR | Zbl
[15] M. Brunella, “Instability of equilibria in dimension three”, Ann. Inst. Fourier (Grenoble), 48:5 (1998), 1345–1357 | DOI | MR | Zbl
[16] V. V. Kozlov, D. V. Treschev, “Instability, asymptotic trajectories and dimension the phase space”, Mosc. Math. J., 18:4 (2018), 681–692 | MR | Zbl
[17] V. V. Kozlov, D. V. Treschev, “Instability of isolated equilibria of dynamical systems with invariant measure in spaces of odd dimension”, Math. Notes, 65:5 (1999), 565–570 | DOI | DOI | MR | Zbl
[18] C. L. Siegel, J. K. Moser, Lectures on celestial mechanics, Grundlehren Math. Wiss., 187, Springer-Verlag, New York–Heidelberg, 1971, xii+290 pp. | DOI | MR | Zbl
[19] V. V. Kozlov, “Gyroscopic stabilization of degenerate equilibria and the topology of real algebraic varieties”, Dokl. Math., 77:3 (2008), 412–415 | DOI | MR | Zbl
[20] H. Poincaré, “Sur les formes cubiques ternaires et quaternaires”, J. École Polytech., 50 (1883), 199–253 | MR | Zbl | Zbl
[21] H. Matsumura, P. Monsky, “On the automorphisms of hypersurfaces”, J. Math. Kyoto Univ., 3:3 (1963/1964), 347–361 | DOI | MR | Zbl