Mots-clés : billiard, Liouville equivalence, Fomenko-Zieschang invariant.
@article{SM_2020_211_1_a0,
author = {E. E. Karginova},
title = {Billiards bounded by arcs of confocal quadrics on the {Minkowski} plane},
journal = {Sbornik. Mathematics},
pages = {1--28},
year = {2020},
volume = {211},
number = {1},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SM_2020_211_1_a0/}
}
E. E. Karginova. Billiards bounded by arcs of confocal quadrics on the Minkowski plane. Sbornik. Mathematics, Tome 211 (2020) no. 1, pp. 1-28. http://geodesic.mathdoc.fr/item/SM_2020_211_1_a0/
[1] G. D. Birkhoff, Dynamical systems, Amer. Math. Soc. Colloq. Publ., 9, Amer. Math. Soc., New York, 1927, viii+295 pp. | MR | Zbl | Zbl
[2] V. V. Kozlov, D. V. Treshchev, Billiards. A genetic introduction to the dynamics of systems with impacts, Transl. Math. Monogr., 89, Amer. Math. Soc., Providence, RI, 1991, viii+171 pp. | MR | MR | Zbl | Zbl
[3] V. V. Fokicheva, “A topological classification of billiards in locally planar domains bounded by arcs of confocal quadrics”, Sb. Math., 206:10 (2015), 1463–1507 | DOI | DOI | MR | Zbl
[4] V. Dragović, M. Radnović, “Bifurcations of Liouville tori in elliptical billiards”, Regul. Chaotic Dyn., 14:4-5 (2009), 479–494 | DOI | MR | Zbl
[5] V. Dragović, M. Radnović, Poncelet porisms and beyond. Integrable billiards, hyperelliptic Jacobians and pencils of quadrics, Front. Math., Birkhäuser/Springer Basel AG, Basel, 2011, viii+293 pp. | DOI | MR | Zbl
[6] V. V. Fokicheva, A. T. Fomenko, “Integrable billiards model important integrable cases of rigid body dynamics”, Dokl. Math., 92:3 (2015), 682–684 | DOI | DOI | MR | Zbl
[7] V. V. Fokicheva, A. T. Fomenko, “Billiard systems as the models for the rigid body dynamics”, Advances in dynamical systems and control, Stud. Syst. Decis. Control, 69, Springer, Cham, 2016, 13–33 | DOI | MR | Zbl
[8] V. V. Vedyushkina (Fokicheva), A. T. Fomenko, “Integrable topological billiards and equivalent dynamical systems”, Izv. Math., 81:4 (2017), 688–733 | DOI | DOI | MR | Zbl
[9] V. Dragović, M. Radnović, “Topological invariants for elliptical billiards and geodesics on ellipsoids in the Minkowski space”, J. Math. Sci. (N.Y.), 223:6 (2017), 686–694 | DOI | MR | Zbl
[10] A. T. Fomenko, “The symplectic topology of completely integrable Hamiltonian systems”, Russian Math. Surveys, 44:1 (1989), 181–219 | DOI | MR | Zbl
[11] A. T. Fomenko, H. Zieschang, “A topological invariant and a criterion for the equivalence of integrable Hamiltonian systems with two degrees of freedom”, Math. USSR-Izv., 36:3 (1991), 567–596 | DOI | MR | Zbl
[12] A. T. Fomenko, S. V. Matveev, Algorithmic and computer methods for three-manifolds, Math. Appl., 425, Kluwer Acad. Publ., Dordrecht, 1997, xii+334 pp. | DOI | MR | MR | Zbl | Zbl
[13] A. T. Fomenko, P. V. Morozov, “Some new results in topological classification of integrable systems in rigid body dynamics”, Contemporary geometry and related topics (Belgrade, Yugoslavia, 2002), World Sci. Publ., River Edge, NJ, 2004, 201–222 | DOI | MR | Zbl
[14] E. A. Kudryavtseva, I. M. Nikonov, A. T. Fomenko, “Maximally symmetric cell decompositions of surfaces and their coverings”, Sb. Math., 199:9 (2008), 1263–1353 | DOI | DOI | MR | Zbl
[15] A. T. Fomenko, A. Yu. Konyaev, “New approach to symmetries and singularities in integrable Hamiltonian systems”, Topology Appl., 159:7 (2012), 1964–1975 | DOI | MR | Zbl
[16] E. A. Kudryavtseva, A. T. Fomenko, “Symmetries groups of nice Morse functions on surfaces”, Dokl. Math., 86:2 (2012), 691–693 | DOI | MR | Zbl
[17] A. T. Fomenko, A. Konyaev, “Algebra and geometry through Hamiltonian systems”, Continuous and distributed systems. Theory and applications, Solid Mech. Appl., 211, Springer, Cham, 2014, 3–21 | DOI | MR | Zbl
[18] A. T. Fomenko, S. S. Nikolaenko, “The Chaplygin case in dynamics of a rigid body in fluid is orbitally equivalent to the Euler case in rigid body dynamics and to the Jacobi problem about geodesics on the ellipsoid”, J. Geom. Phys., 87 (2015), 115–133 | DOI | MR | Zbl
[19] A. T. Fomenko, V. V. Trofimov, Integrable systems on Lie algebras and symmetric spaces, Adv. Stud. Contemp. Math., 2, Gordon and Breach Sci. Publ., New York, 1988, xii+294 pp. | MR | Zbl
[20] S. V. Matveev, A. T. Fomenko, “Morse-type theory for integrable Hamiltonian systems with tame integrals”, Math. Notes, 43:5 (1988), 382–386 | DOI | MR | Zbl
[21] A. V. Bolsinov, A. T. Fomenko, Integrable Hamiltonian systems. Geometry, topology, classification, Chapman Hall/CRC, Boca Raton, FL, 2004, xvi+730 pp. | DOI | MR | MR | Zbl | Zbl
[22] A. T. Fomenko, “A bordism theory for integrable nondegenerate Hamiltonian systems with two degrees of freedom. A new topological invariant of higher-dimensional integrable systems”, Math. USSR-Izv., 39:1 (1992), 731–759 | DOI | MR | Zbl
[23] A. T. Fomenko, Symplectic geometry, Adv. Stud. Contemp. Math., 5, 2nd ed., Gordon and Breach Publishers, Luxembourg, 1995, xvi+467 pp. | MR | MR | Zbl | Zbl