Two purity theorems and the Grothendieck-Serre conjecture concerning principal $\mathbf G$-bundles
Sbornik. Mathematics, Tome 211 (2020) no. 12, pp. 1777-1794
Voir la notice de l'article provenant de la source Math-Net.Ru
The main results of the paper are two purity theorems for reductive group schemes over regular local rings containing a field. Using these two theorems a well-known Grothendieck-Serre conjecture on principal bundles is reduced to the simply-connected case. We point out that the mentioned reduction is one of the major steps in the proof of the conjecture that the author published in another work.
Bibliography: 25 titles.
Keywords:
reductive group schemes, principal bundles, purity theorems, Grothendieck-Serre conjecture.
@article{SM_2020_211_12_a3,
author = {I. A. Panin},
title = {Two purity theorems and the {Grothendieck-Serre} conjecture concerning principal $\mathbf G$-bundles},
journal = {Sbornik. Mathematics},
pages = {1777--1794},
publisher = {mathdoc},
volume = {211},
number = {12},
year = {2020},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SM_2020_211_12_a3/}
}
TY - JOUR AU - I. A. Panin TI - Two purity theorems and the Grothendieck-Serre conjecture concerning principal $\mathbf G$-bundles JO - Sbornik. Mathematics PY - 2020 SP - 1777 EP - 1794 VL - 211 IS - 12 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/SM_2020_211_12_a3/ LA - en ID - SM_2020_211_12_a3 ER -
I. A. Panin. Two purity theorems and the Grothendieck-Serre conjecture concerning principal $\mathbf G$-bundles. Sbornik. Mathematics, Tome 211 (2020) no. 12, pp. 1777-1794. http://geodesic.mathdoc.fr/item/SM_2020_211_12_a3/