@article{SM_2020_211_12_a3,
author = {I. A. Panin},
title = {Two purity theorems and the {Grothendieck-Serre} conjecture concerning principal $\mathbf G$-bundles},
journal = {Sbornik. Mathematics},
pages = {1777--1794},
year = {2020},
volume = {211},
number = {12},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SM_2020_211_12_a3/}
}
I. A. Panin. Two purity theorems and the Grothendieck-Serre conjecture concerning principal $\mathbf G$-bundles. Sbornik. Mathematics, Tome 211 (2020) no. 12, pp. 1777-1794. http://geodesic.mathdoc.fr/item/SM_2020_211_12_a3/
[1] J.-L. Colliot-Thélène, M. Ojanguren, “Espaces principaux homogènes localement triviaux”, Inst. Hautes Études Sci. Publ. Math., 75:2 (1992), 97–122 | DOI | MR | Zbl
[2] J.-L. Colliot-Thélène, R. Parimala, R. Sridharan, “Un théorème de pureté locale”, C. R. Acad. Sci. Paris Sér. I Math., 309:14 (1989), 857–862 | MR | Zbl
[3] Schémas en groupes, Séminaire de géométrie algébrique du Bois Marie 1962/64 (SGA 3), dirigé par M. Demazure, A. Grothendieck, v. III, Lecture Notes in Math., 153, Structure des schémas en groupes réductifs, Rev. reprint, Springer-Verlag, Berlin–New York, 1970, viii+529 pp. | DOI | MR | Zbl
[4] D. Eisenbud, Commutative algebra. With a view toward algebraic geometry, Grad. Texts in Math., 150, Springer-Verlag, New York, 1995, xvi+785 pp. | DOI | MR | Zbl
[5] R. Fedorov, I. Panin, “A proof of Grothendieck–Serre conjecture on principal bundles over regular local rings containing infinite fields”, Publ. Math. Inst. Hautes Études Sci., 122 (2015), 169–193 ; arXiv: 1211.2678v2 | DOI | MR | Zbl
[6] A. Grothendieck, “Torsion homologique et sections rationnalles”, Séminaire C. Chevalley (2e année), v. 3, Anneaux de Chow et applications, Secrétariat mathématique, Paris, 1958, Exp. No. 5, 29 pp. | MR | Zbl
[7] A. Grothendieck, “Le group de Brauer. II. Théorie cohomologique”, Dix exposés sur la cohomologie de schémas, Adv. Stud. Pure Math., 3, North-Holland, Amsterdam, 1968, 67–87 | MR | Zbl
[8] N. Guo, “The Grothendieck–Serre conjecture over semilocal Dedekind rings”, Transform. Groups, Publ. online: 2020, 1–21 | DOI
[9] Y. A. Nisnevich, “Espaces homogènes principaux rationnellement triviaux et arithmétique des schémas en groupes réductifs sur les anneaux de Dedekind [Rationally trivial principal homogeneous spaces and arithmetic of reductive group schemes over Dedekind rings]”, C. R. Acad. Sci. Paris Sér. I Math., 299:1 (1984), 5–8 | MR | Zbl
[10] M. Ojanguren, I. Panin, “A purity theorem for the Witt group”, Ann. Sci. École Norm. Sup. (4), 32:1 (1999), 71–86 | DOI | MR | Zbl
[11] M. Ojanguren, I. Panin, “Rationally trivial Hermitian spaces are locally trivial”, Math. Z., 237:1 (2001), 181–198 | DOI | MR | Zbl
[12] I. Panin, A. Stavrova, N. Vavilov, “On Grothendieck–Serre's conjecture concerning principal $G$-bundles over reductive group schemes: I”, Compos. Math., 151:3 (2015), 535–567 | DOI | MR | Zbl
[13] I. A. Panin, “On Grothendieck–Serre's conjecture concerning principal $G$-bundles over reductive group schemes: II”, Izv. RAN. Ser. matem., 80:4 (2016), 131–162 | DOI | MR | Zbl
[14] I. Panin, “On Grothendieck–Serre conjecture concerning principal bundles”, Proceedings of the international congress of mathematicians (Rio de Janeiro, 2018), v. 2, World Sci. Publ., Hackensack, NJ, 2018, 201–221 | DOI | MR | Zbl
[15] I. A. Panin, “Nice triples and moving lemmas for motivic spaces”, Izv. Math., 83:4 (2019), 796–829 | DOI | DOI | MR | Zbl
[16] I. Panin, “Nice triples and the Grothendieck–Serre conjecture concerning principal $G$-bundles over reductive group schemes”, Duke Math. J., 168:2 (2019), 351–375 | DOI | MR | Zbl
[17] I. A. Panin, “Proof of Grothendieck–Serre conjecture on principal bundles over regular local rings containing a field”, Izv. Math., 84:4 (2020), 780–795 | DOI | DOI | MR | Zbl
[18] I. A. Panin, A. A. Suslin, “On a Grothendieck conjecture for Azumaya algebras”, St. Petersburg Math. J., 9:4 (1998), 851–858 | MR | Zbl
[19] B. Poonen, “Bertini theorems over finite fields”, Ann. of Math. (2), 160:3 (2004), 1099–1127 | DOI | MR | Zbl
[20] F. Charles, B. Poonen, “Bertini irreducibility theorems over finite fields”, J. Amer. Math. Soc., 29:1 (2016), 81–94 ; arXiv: 1311.4960v1 | DOI | MR | Zbl
[21] M. Rost, “Durch Normengruppen definierte birationale Invarianten”, C. R. Acad. Sci. Paris Sér. I Math., 310:4 (1990), 189–192 | MR | Zbl
[22] J.-P. Serre, “Espaces fibrés algébriques”, Séminaire C. Chevalley (2e année), v. 3, Anneaux de Chow et applications, Secrétariat mathématique, Paris, 1958, Exp. No. 1, 37 pp. | MR | Zbl
[23] A. Suslin, V. Voevodsky, “Singular homology of abstract algebraic varieties”, Invent. Math., 123:1 (1996), 61–94 | DOI | MR | Zbl
[24] V. Voevodsky, “Cohomological theory of presheaves with transfers”, Cycles, transfers, and motivic homology theories, Ann. of Math. Stud., 143, Princeton Univ. Press, Princeton, NJ, 2000, 87–137 | MR | Zbl
[25] K. V. Zainoulline, “On Grothendieck's conjecture about principal homogeneous spaces for some classical algebraic groups”, St. Petersburg Math. J., 12:1 (2001), 117–143 | MR | Zbl