@article{SM_2020_211_12_a2,
author = {L. M. Kozhevnikova},
title = {Renormalized solutions of elliptic equations with~variable exponents and general measure data},
journal = {Sbornik. Mathematics},
pages = {1737--1776},
year = {2020},
volume = {211},
number = {12},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SM_2020_211_12_a2/}
}
L. M. Kozhevnikova. Renormalized solutions of elliptic equations with variable exponents and general measure data. Sbornik. Mathematics, Tome 211 (2020) no. 12, pp. 1737-1776. http://geodesic.mathdoc.fr/item/SM_2020_211_12_a2/
[1] J. Leray, J.-L. Lions, “Quelques résultats de Višik sur les problèmes elliptiques non linéaires par les méthodes de Minty–Browder”, Bull. Soc. Math. France, 93 (1965), 97–107 | DOI | MR | Zbl
[2] L. Boccardo, T. Gallouët, “Non-linear elliptic and parabolic equations involving measure data”, J. Funct. Anal., 87:1 (1989), 149–169 | DOI | MR | Zbl
[3] L. Boccardo, T. Gallou{e}t, “Nonlinear elliptic equations with right hand side measures”, Comm. Partial Differential Equations, 17:3-4 (1992), 641–655 | DOI | MR | Zbl
[4] P. Bénilan, L. Boccardo, T. Gallouët, R. Gariepy, M. Pierre, J. L. Vázquez, “An $L^1$-theory of existence and uniqueness of solutions of nonlinear elliptic equations”, Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4), 22:2 (1995), 241–273 | MR | Zbl
[5] S. N. Kružkov, “First order quasilinear equations in several independent variables”, Math. USSR-Sb., 10:2 (1970), 217–243 | DOI | MR | Zbl
[6] F. Murat, Soluciones renormalizadas de EDP elipticas no lineales, Tech. rep. R93023, C.N.R.S., Laboratoire d'analyse numérique, Univ. P. M. Curie (Paris VI), Paris, 1993, 33 pp.
[7] G. Dal Maso, F. Murat, L. Orsina, A. Prignet, “Renormalized solutions of elliptic equations with general measure data”, Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4), 28:4 (1999), 741–808 | MR | Zbl
[8] A. Malusa, “A new proof of the stability of renormalized solutions to elliptic equations with measure data”, Asymptot. Anal., 43:1-2 (2005), 111–129 | MR | Zbl
[9] M. F. Betta, A. Mercaldo, F. Murat, M. M. Porzio, “Existence of renormalized solutions to nonlinear elliptic equations with a lower-order term and right-hand side a measure”, J. Math. Pures Appl. (9), 82:1 (2003), 90–124 | DOI | MR | Zbl
[10] L. Véron, Local and global aspects of quasilinear degenerate elliptic equations. Quasilinear elliptic singular problems, World Sci. Publ., Hackensack, NJ, 2017, xv+457 pp. | DOI | MR | Zbl
[11] A. K. Gushchin, “Solvability of the Dirichlet problem for an inhomogeneous second-order elliptic equation”, Sb. Math., 206:10 (2015), 1410–1439 | DOI | DOI | MR | Zbl
[12] V. V. Zhikov, “On variational problems and nonlinear elliptic equations with nonstandard growth conditions”, J. Math. Sci. (N.Y.), 173:5 (2011), 463–570 | DOI | MR | Zbl
[13] V. V. Zhikov, S. E. Pastukhova, “Improved integrability of the gradients of solutions of elliptic equations with variable nonlinearity exponent”, Sb. Math., 199:12 (2008), 1751–1782 | DOI | DOI | MR | Zbl
[14] Yu. A. Alkhutov, M. D. Surnachev, “Behavior of solutions of the Dirichlet problem for the $p(x)$-Laplacian at a boundary point”, St. Petersburg Math. J., 31:2 (2020), 251–271 | DOI | MR | Zbl
[15] M. Sanchón, J. M. Urbano, “Entropy solutions for the $p(x)$-Laplace equation”, Trans. Amer. Math. Soc., 361:12 (2009), 6387–6405 | DOI | MR | Zbl
[16] M. Bendahmane, P. Wittbold, “Renormalized solutions for nonlinear elliptic equations with variable exponents and $L^1$ data”, Nonlinear Anal., 70:2 (2009), 567–583 | DOI | MR | Zbl
[17] Chao Zhang, Shulin Zhou, “Entropy and renormalized solutions for the $p(x)$-Laplacian equation with measure data”, Bull. Aust. Math. Soc., 82:3 (2010), 459–479 | DOI | MR | Zbl
[18] Boqiang Lv, Fengquan Li, Weilin Zou, “Existence and uniqueness of renormalized solutions to some nonlinear elliptic equations with variable exponents and measure data”, J. Convex Anal., 21:2 (2014), 317–338 | MR | Zbl
[19] M. B. Benboubker, H. Chrayteh, M. El Moumni, H. Hjiaj, “Entropy and renormalized solutions for nonlinear elliptic problem involving variable exponent and measure data”, Acta Math. Sin. (Engl. Ser.), 31:1 (2015), 151–169 | DOI | MR | Zbl
[20] T. Ahmedatt, E. Azroul, H. Hjiaj, A. Touzani, “Existence of entropy solutions for some nonlinear elliptic problems involving variable exponent and measure data”, Bol. Soc. Parana. Mat. (3), 36:2 (2018), 33–55 | DOI | MR | Zbl
[21] F. Kh. Mukminov, “Existence of a renormalized solution to an anisotropic parabolic problem for an equation with diffuse measure”, Proc. Steklov Inst. Math., 306 (2019), 178–195 | DOI | DOI | MR | Zbl
[22] L. M. Kozhevnikova, “Ob entropiinykh resheniyakh anizotropnykh ellipticheskikh uravnenii s peremennymi pokazatelyami nelineinostei v neogranichennykh oblastyakh”, Differentsialnye i funktsionalno-differentsialnye uravneniya, SMFN, 63, no. 3, RUDN, M., 2017, 475–493 | DOI | MR
[23] L. M. Kozhevnikova, “On solutions of anisotropic elliptic equations with variable exponent and measure data”, Complex Var. Elliptic Equ., 65:3 (2020), 333–367 | DOI | MR | Zbl
[24] L. M. Kozhevnikova, “Entropy and renormalized solutions of anisotropic elliptic equations with variable nonlinearity exponents”, Sb. Math., 210:3 (2019), 417–446 | DOI | DOI | MR | Zbl
[25] L. M. Kozhevnikova, “Equivalence of entropy and renormalized solutions of anisotropic elliptic problem in unbounded domains with measure data”, Russian Math. (Iz. VUZ), 64:1 (2020), 25–39 | DOI | DOI | Zbl
[26] F. Kh. Mukminov, “Uniqueness of the renormalized solution of an elliptic-parabolic problem in anisotropic Sobolev–Orlicz spaces”, Sb. Math., 208:8 (2017), 1187–1206 | DOI | DOI | MR | Zbl
[27] L. Diening, P. Harjulehto, P. Hästö, M. Růžička, Lebesgue and Sobolev spaces with variable exponents, Lecture Notes in Math., 2017, Springer, Heidelberg, 2011, x+509 pp. | DOI | MR | Zbl
[28] Xianling Fan, Dun Zhao, “On the spaces $L^{p(x)}(\Omega)$ and $W^{m,p(x)}(\Omega)$”, J. Math. Anal. Appl., 263:2 (2001), 424–446 | DOI | MR | Zbl
[29] Chao Zhang, “Entropy solutions for nonlinear elliptic equations with variable exponents”, Electron. J. Differential Equations, 2014 (2014), 92, 14 pp. | MR | Zbl
[30] I. Nyanquini, S. Ouaro, S. Soma, “Entropy solution to nonlinear multivalued elliptic problem with variable exponents and measure data”, An. Univ. Craiova Ser. Mat. Inform., 40:2 (2013), 174–198 | MR | Zbl
[31] M. Fukushima, K. Sato, S. Taniguchi, “On the closable parts of pre-Dirichlet forms and the fine supports of underlying measures”, Osaka J. Math., 28:3 (1991), 517–535 | MR | Zbl
[32] P. Harjulehto, P. Hästö, M. Koskenoja, S. Varonen, “Sobolev capacity on the space $W^{1,p(\cdot)}(\mathbb{R}^n)$”, J. Funct. Spaces Appl., 1:1 (2003), 17–33 | DOI | MR | Zbl
[33] M. Abdellaoui, M. Kbiri Alaoui, E. Azroul, “Existence of renormalized solutions to quasilinear elliptic problems with general measure data”, Afr. Mat., 29:5-6 (2018), 967–985 | DOI | MR | Zbl
[34] N. Dunford, J. T. Schwartz, Linear operators, v. I, Pure Appl. Math., 7, General theory, Interscience Publishers, Inc., New York; Interscience Publishers, Ltd., London, 1958, xiv+858 pp. | MR | MR | Zbl
[35] E. Hewitt, K. Stromberg, Real and abstract analysis. A modern treatment of the theory of functions of a real variable, Springer-Verlag, New York, 1965, x+476 pp. | MR | Zbl
[36] G. Dal Maso, A. Malusa, “Some properties of reachable solutions of nonlinear elliptic equations with measure data”, Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4), 25:1-2 (1997), 375–396 | MR | Zbl
[37] J.-L. Lions, Quelques méthodes de résolution des problèmes aux limites non linéaires, Dunod, Paris; Gauthier-Villars, Paris, 1969, xx+554 pp. | MR | MR | Zbl | Zbl