Necessary and sufficient conditions for extending a function to a Schur function
Sbornik. Mathematics, Tome 211 (2020) no. 12, pp. 1660-1703 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

A criterion for a function given by its values (with multiplicities) at a sequence of points in the disc $\mathbb D=\{|z|<1\}$ to extend to a holomorphic function in $\mathbb D$ with modulus at most $1$ is stated and proved. In the case when the function is defined by the values of its derivatives at $z=0$, this coincides with Schur's well-known criterion. Bibliography: 16 titles.
Keywords: continued fractions, Schur functions, Hankel determinants.
@article{SM_2020_211_12_a0,
     author = {V. I. Buslaev},
     title = {Necessary and sufficient conditions for~extending a~function to {a~Schur} function},
     journal = {Sbornik. Mathematics},
     pages = {1660--1703},
     year = {2020},
     volume = {211},
     number = {12},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2020_211_12_a0/}
}
TY  - JOUR
AU  - V. I. Buslaev
TI  - Necessary and sufficient conditions for extending a function to a Schur function
JO  - Sbornik. Mathematics
PY  - 2020
SP  - 1660
EP  - 1703
VL  - 211
IS  - 12
UR  - http://geodesic.mathdoc.fr/item/SM_2020_211_12_a0/
LA  - en
ID  - SM_2020_211_12_a0
ER  - 
%0 Journal Article
%A V. I. Buslaev
%T Necessary and sufficient conditions for extending a function to a Schur function
%J Sbornik. Mathematics
%D 2020
%P 1660-1703
%V 211
%N 12
%U http://geodesic.mathdoc.fr/item/SM_2020_211_12_a0/
%G en
%F SM_2020_211_12_a0
V. I. Buslaev. Necessary and sufficient conditions for extending a function to a Schur function. Sbornik. Mathematics, Tome 211 (2020) no. 12, pp. 1660-1703. http://geodesic.mathdoc.fr/item/SM_2020_211_12_a0/

[1] J. Schur, “Über Potenzreihen, die im Innern des Einheitskreises beschränkt sind. I”, J. Reine Angew. Math., 1917:147 (1917), 205–232 ; II, 1918:148 (1918), 122–145 | DOI | MR | Zbl | DOI | MR

[2] L. Baratchart, S. Kupin, V. Lunot, M. Olivi, “Multipoint Schur algorithm and orthogonal rational functions, I: Convergence properties”, J. Anal. Math., 114 (2011), 207–253 | DOI | MR | Zbl

[3] V. I. Buslaev, “Schur's criterion for formal power series”, Sb. Math., 210:11 (2019), 1563–1580 | DOI | DOI | MR | Zbl

[4] W. B. Jones, W. J. Thron, Continued fractions. Analytic theory and applications, Encyclopedia Math. Appl., 11, Addison-Wesley Publishing Co., Reading, MA, 1980, xxix+428 pp. | MR | MR | Zbl

[5] V. I. Buslaev, “On Hankel determinants of functions given by their expansions in $P$-fractions”, Ukrainian Math. J., 62:3 (2010), 358–372 | DOI | MR | Zbl

[6] V. I. Buslaev, “On singular points of meromorphic functions determined by continued fractions”, Math. Notes, 103:4 (2018), 527–536 | DOI | DOI | MR | Zbl

[7] G. Pólya, “Beitrag zur Verallgemeinerung des Verzerrungssatzes auf mehrfach zusammenhängende Gebiete. III”, Sitzungsber. Preuss. Akad. Wiss. Phys.-Math. Kl., 1929 (1929), 55–62 | Zbl

[8] S. P. Suetin, “An analog of Pólya's theorem for multivalued analytic functions with finitely many branch points”, Math. Notes, 101:5 (2017), 888–898 | DOI | DOI | MR | Zbl

[9] V. I. Buslaev, “On the convergence of continued T-fractions”, Proc. Steklov Inst. Math., 235 (2001), 29–43 | MR | Zbl

[10] V. I. Buslaev, “An analogue of Polya's theorem for piecewise holomorphic functions”, Sb. Math., 206:12 (2015), 1707–1721 | DOI | DOI | MR | Zbl

[11] V. I. Buslaev, “Capacity of a compact set in a logarithmic potential field”, Proc. Steklov Inst. Math., 290 (2015), 238–255 | DOI | DOI | MR | Zbl

[12] V. I. Buslaev, “The capacity of the rational preimage of a compact set”, Math. Notes, 100:6 (2016), 781–789 | DOI | DOI | MR | Zbl

[13] V. I. Buslaev, “Continued fractions with limit periodic coefficients”, Sb. Math., 209:2 (2018), 187–205 | DOI | DOI | MR | Zbl

[14] V. I. Buslaev, “An analog of Gonchar's theorem for the $m$-point version of Leighton's conjecture”, Proc. Steklov Inst. Math., 293 (2016), 127–139 | DOI | DOI | MR | Zbl

[15] V. I. Buslaev, “On the Van Vleck theorem for limit-periodic continued fractions of general form”, Proc. Steklov Inst. Math., 298 (2017), 68–93 | DOI | DOI | MR | Zbl

[16] V. I. Buslaev, “Convergence of a limit periodic Schur continued fraction”, Math. Notes, 107:5 (2020), 701–712 | DOI | DOI | Zbl