Necessary and sufficient conditions for~extending a~function to a~Schur function
Sbornik. Mathematics, Tome 211 (2020) no. 12, pp. 1660-1703

Voir la notice de l'article provenant de la source Math-Net.Ru

A criterion for a function given by its values (with multiplicities) at a sequence of points in the disc $\mathbb D=\{|z|1\}$ to extend to a holomorphic function in $\mathbb D$ with modulus at most $1$ is stated and proved. In the case when the function is defined by the values of its derivatives at $z=0$, this coincides with Schur's well-known criterion. Bibliography: 16 titles.
Keywords: continued fractions, Schur functions, Hankel determinants.
@article{SM_2020_211_12_a0,
     author = {V. I. Buslaev},
     title = {Necessary and sufficient conditions for~extending a~function to {a~Schur} function},
     journal = {Sbornik. Mathematics},
     pages = {1660--1703},
     publisher = {mathdoc},
     volume = {211},
     number = {12},
     year = {2020},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2020_211_12_a0/}
}
TY  - JOUR
AU  - V. I. Buslaev
TI  - Necessary and sufficient conditions for~extending a~function to a~Schur function
JO  - Sbornik. Mathematics
PY  - 2020
SP  - 1660
EP  - 1703
VL  - 211
IS  - 12
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SM_2020_211_12_a0/
LA  - en
ID  - SM_2020_211_12_a0
ER  - 
%0 Journal Article
%A V. I. Buslaev
%T Necessary and sufficient conditions for~extending a~function to a~Schur function
%J Sbornik. Mathematics
%D 2020
%P 1660-1703
%V 211
%N 12
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SM_2020_211_12_a0/
%G en
%F SM_2020_211_12_a0
V. I. Buslaev. Necessary and sufficient conditions for~extending a~function to a~Schur function. Sbornik. Mathematics, Tome 211 (2020) no. 12, pp. 1660-1703. http://geodesic.mathdoc.fr/item/SM_2020_211_12_a0/