Necessary and sufficient conditions for~extending a~function to a~Schur function
Sbornik. Mathematics, Tome 211 (2020) no. 12, pp. 1660-1703
Voir la notice de l'article provenant de la source Math-Net.Ru
A criterion for a function given by its values (with multiplicities) at a sequence of points in the disc $\mathbb D=\{|z|1\}$ to extend to a holomorphic function in $\mathbb D$ with modulus at most $1$ is stated and proved. In the case when the function is defined by the values of its derivatives at $z=0$, this coincides with Schur's well-known criterion.
Bibliography: 16 titles.
Keywords:
continued fractions, Schur functions, Hankel determinants.
@article{SM_2020_211_12_a0,
author = {V. I. Buslaev},
title = {Necessary and sufficient conditions for~extending a~function to {a~Schur} function},
journal = {Sbornik. Mathematics},
pages = {1660--1703},
publisher = {mathdoc},
volume = {211},
number = {12},
year = {2020},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SM_2020_211_12_a0/}
}
V. I. Buslaev. Necessary and sufficient conditions for~extending a~function to a~Schur function. Sbornik. Mathematics, Tome 211 (2020) no. 12, pp. 1660-1703. http://geodesic.mathdoc.fr/item/SM_2020_211_12_a0/