@article{SM_2020_211_11_a6,
author = {A. M. Savchuk and A. A. Shkalikov},
title = {Asymptotic analysis of solutions of ordinary differential equations with distribution coefficients},
journal = {Sbornik. Mathematics},
pages = {1623--1659},
year = {2020},
volume = {211},
number = {11},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SM_2020_211_11_a6/}
}
TY - JOUR AU - A. M. Savchuk AU - A. A. Shkalikov TI - Asymptotic analysis of solutions of ordinary differential equations with distribution coefficients JO - Sbornik. Mathematics PY - 2020 SP - 1623 EP - 1659 VL - 211 IS - 11 UR - http://geodesic.mathdoc.fr/item/SM_2020_211_11_a6/ LA - en ID - SM_2020_211_11_a6 ER -
A. M. Savchuk; A. A. Shkalikov. Asymptotic analysis of solutions of ordinary differential equations with distribution coefficients. Sbornik. Mathematics, Tome 211 (2020) no. 11, pp. 1623-1659. http://geodesic.mathdoc.fr/item/SM_2020_211_11_a6/
[1] G. D. Birkhoff, “On the asymptotic character of the solutions of certain linear differential equations containing a parameter”, Trans. Amer. Math. Soc., 9:2 (1908), 219–231 | DOI | MR | Zbl
[2] G. D. Birkhoff, “Boundary value and expansion problems of ordinary linear differential equations”, Trans. Amer. Math. Soc., 9:4 (1908), 373–395 | DOI | MR | Zbl
[3] A. M. Savchuk, A. A. Shkalikov, “Sturm–Liouville operators with singular potentials”, Math. Notes, 66:6 (1999), 741–753 | DOI | DOI | MR | Zbl
[4] A. M. Savchuk, A. A. Shkalikov, “Sturm–Liouville operators with distribution potentials”, Trans. Moscow Math. Soc., 64 (2003), 143–192 | MR | Zbl
[5] A. A. Vladimirov, “On the convergence of sequences of ordinary differential equations”, Math. Notes, 75:6 (2004), 877–880 | DOI | DOI | MR | Zbl
[6] I. M. Guseinov, R. T. Pashaev, “Ob odnom klasse differentsialnykh operatorov s singulyarnymi koeffitsientami”, Dokl. NAN Azerbaidzhana, 62:1 (2006), 7–10
[7] K. A. Mirzoev, A. A. Shkalikov, “Dvuchlennye differentsialnye operatory s singulyarnym koeffitsientom”, Mezhdunarodnaya konferentsiya “Differentsialnye uravneniya i smezhnye voprosy”, posvyaschennaya 110-i godovschine so dnya rozhdeniya I. G. Petrovskogo: tezisy dokladov, XXIII sovmestnoe zasedanie MMO i sem. im. I. G. Petrovskogo (Moskva, 2011), Izd-vo MGU, M.; OOO “INTUIT.RU”, M., 2011, 274–275
[8] J. Eckhardt, F. Gesztesy, R. Nichols, G. Teschl, “Weyl–Titchmarsh theory for Sturm–Liouville operators with distributional potentials”, Opuscula Math., 33:3 (2013), 467–563 | DOI | MR | Zbl
[9] A. Goriunov, V. Mikhailets, K. Pankrashkin, “Formally self-adjoint quasi-differential operators and boundary-value problems”, Electron. J. Differential Equations, 2013 (2013), 101, 16 pp. | MR | Zbl
[10] K. A. Mirzoev, “Sturm–Liouville operators”, Trans. Moscow Math. Soc., 75 (2014), 281–299 | DOI | MR | Zbl
[11] K. A. Mirzoev, A. A. Shkalikov, “Differential operators of even order with distribution coefficients”, Math. Notes, 99:5 (2016), 779–784 | DOI | DOI | MR | Zbl
[12] E. A. Coddington, N. Levinson, Theory of ordinary differential equations, McGraw-Hill Book Company, Inc., New York–Toronto–London, 1955, xii+429 pp. | MR | Zbl
[13] O. Perron, “Über lineare Differentialgleichungen, bei denen die unabhängig Variable reel ist. I”, J. Reine Angew. Math., 142 (1913), 254–270 ; K. Knopp, O. Perron, II, 143, 25–49 | DOI | MR | Zbl | DOI | MR
[14] Ya. D. Tamarkin, O nekotorykh obschikh zadachakh teorii obyknovennykh lineinykh differentsialnykh uravnenii i o razlozhenii proizvolnykh funktsii v ryady, Tip. M. P. Frolovoi, Petrograd, 1917, xiv+308 pp. | Zbl
[15] G. D. Birkhoff, R. E. Langer, “The boundary problems and developments associated with a system of ordinary differential equations of the first order”, Proc. Amer. Acad. Arts Sci., 58:2 (1923), 51–128 | DOI | Zbl
[16] J. Tamarkin, “Some general problems of the theory of ordinary linear differential equations and expansion of an arbitrary function in series of fundamental functions”, Math. Z., 27:1 (1928), 1–54 | DOI | MR | Zbl
[17] M. A. Naimark, Linear differential operators, v. I, II, Frederick Ungar Publishing Co., New York, 1967, 1968, xiii+144 pp., xv+352 pp. | MR | MR | MR | Zbl | Zbl
[18] A. A. Shkalikov, V. E. Vladykina, “Asymptotics of the solutions of the Sturm–Liouville equation with singular coefficients”, Math. Notes, 98:6 (2015), 891–899 | DOI | DOI | MR | Zbl
[19] V. A. Marchenko, Sturm–Liouville operators and applications, Oper. Theory Adv. Appl., 22, Birkhäuser Verlag, Basel, 1986, xii+367 pp. | DOI | MR | MR | Zbl | Zbl
[20] R. O. Hryniv, Ya. V. Mykytyuk, “Transformation operators for Sturm–Liouville operators with singular potentials”, Math. Phys. Anal. Geom., 7:2 (2004), 119–149 | DOI | MR | Zbl
[21] S. Albeverio, R. O. Hryniv, Ya. V. Mykytyuk, “Inverse spectral problems for Dirac operators with summable potentials”, Russ. J. Math. Phys., 12:4 (2005), 406–423 | MR | Zbl
[22] M. M. Malamud, “Uniqueness questions in inverse problems for systems of differential equations on a finite interval”, Trans. Moscow Math. Soc., 1999, 173–224 | MR | Zbl
[23] A. A. Lunyov, M. M. Malamud, “On the Riesz basis property of root vectors system for $2\times 2$ Dirac type operators”, J. Math. Anal. Appl., 441:1 (2016), 57–103 | DOI | MR | Zbl
[24] A. M. Savchuk, A. A. Shkalikov, “Spectral properties of Dirac operators on $(0,1)$ with summable potentials”, The sixth International conference on differential and functional differential equations. Abstracts (Moscow, 2011), 2011, 63
[25] A. M. Savchuk, A. A. Shkalikov, “Dirac operator with complex-valued summable potential”, Math. Notes, 96:5 (2014), 777–810 | DOI | MR | Zbl
[26] I. M. Rapoport, O nekotorykh asimptoticheskikh metodakh v teorii differentsialnykh uravnenii, Izd-vo AN USSR, Kiev, 1954, 292 pp. | MR
[27] A. I. Vagabov, “On sharpening an asymptotic theorem of Tamarkin”, Differ. Equ., 29:1 (1993), 33–41 | MR | Zbl
[28] V. S. Rykhlov, “Asymptotical formulas for solutions of linear differential systems of the first order”, Results Math., 36:3-4 (1999), 342–353 | DOI | MR | Zbl
[29] A. I. Vagabov, “On the asymptotics with respect to a parameter of solutions of differential systems with coefficients in the class $L_q$”, Differ. Equ., 46:1 (2010), 17–23 | DOI | MR | Zbl
[30] W. Wasow, Asymptotic expansions for ordinary differential equations, Pure Appl. Math., 14, Intersci. Publ. John Wiley Sons, Inc., New York–London–Sydney, 1965, ix+362 pp. | MR | Zbl | Zbl
[31] A. A. Shkalikov, “Boundary problems for ordinary differential equations with parameter in the boundary conditions”, J. Soviet Math., 33 (1986), 1311–1342 | DOI | MR | Zbl
[32] A. A. Lunyov, M. M. Malamud, “On the completeness and Riesz basis property of root subspaces of boundary value problems for first order systems and applications”, J. Spectr. Theory, 5:1 (2015), 17–70 | DOI | MR | Zbl
[33] M. M. Malamud, L. L. Oridoroga, “On the completeness of root subspaces of boundary value problems for first order systems of ordinary differential equations”, J. Funct. Anal., 263:7 (2012), 1939–1980 | DOI | MR | Zbl
[34] A. M. Savchuk, A. A. Shkalikov, “Inverse problems for Sturm–Liouville operators with potentials in Sobolev spaces: uniform stability”, Funct. Anal. Appl., 44:4 (2010), 270–285 | DOI | DOI | MR | Zbl
[35] C. Bennewits, “Spectral asymptotics for Sturm–Liouville equations”, Proc. London Math. Soc. (3), 59:2 (1989), 294–338 | DOI | MR | Zbl
[36] A. Fleige, Spectral theory of indefinite Krein–Feller differential operators, Math. Res., 98, Akademie Verlag, Berlin, 1996, 133 pp. | MR | Zbl
[37] A. Zettl, Sturm–Liouville theory, Math. Surveys Monogr., 121, Amer. Math. Soc., Providence, RI, 2005, xii+328 pp. | DOI | MR | Zbl
[38] J. Behrndt, F. Philipp, C. Trunk, “Bounds on the non-real spectrum of differential operators with indefinite weights”, Math. Ann., 357:1 (2013), 185–213 | DOI | MR | Zbl
[39] A. A. Shkalikov, V. T. Pliev, “Compact perturbations of strongly damped operator pencils”, Math. Notes, 45:2 (1989), 167–174 | DOI | MR | Zbl
[40] R. Kh. Amirov, I. M. Guseinov, “Some classes of Dirac operators with singular potentials”, Differ. Equ., 40:7 (2004), 1066–1068 | DOI | MR | Zbl
[41] A. M. Savchuk, A. A. Shkalikov, Asimptoticheskie formuly dlya fundamentalnoi sistemy reshenii obyknovennykh differentsialnykh uravnenii vysokogo poryadka s koeffitsientami raspredeleniyami, arXiv: 1704.02736V1
[42] F. V. Atkinson, W. N. Everitt, A. Zettl, “Regularization of a Sturm–Liouville problem with an interior singularity using quasi-derivatives”, Differential Integral Equations, 1:2 (1988), 213–221 | MR | Zbl
[43] W. N. Everitt, “A note on linear ordinary quasi-differential equations”, Proc. Roy. Soc. Edinburgh Sect. A, 101:1-2 (1985), 1–14 | DOI | MR | Zbl
[44] V. E. Vladykina, “Asymptotics of fundamental solutions to Sturm–Liouville problem with respect to spectral parameter”, Moscow Univ. Math. Bull., 74:1 (2019), 38–41 | DOI | MR | Zbl