Asymptotic analysis of solutions of ordinary differential equations with distribution coefficients
Sbornik. Mathematics, Tome 211 (2020) no. 11, pp. 1623-1659 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Ordinary differential equations of the form $$ \tau(y)- \lambda ^{2m} \varrho(x) y=0, \qquad \tau(y) =\sum_{k,s=0}^m(\tau_{k,s}(x)y^{(m-k)}(x))^{(m-s)}, $$ on the finite interval $x\in[0,1]$ are under consideration. Here the functions $\tau_{0,0}$ and $\varrho$ are absolutely continuous and positive and the coefficients of the differential expression $\tau(y)$ are subject to the conditions $$ \tau_{k,s}^{(-l)}\in L_2[0,1], \qquad 0\le k,s \le m, \quad l=\min\{k,s\}, $$ where $f^{(-k)}$ denotes the $k$th antiderivative of the function $f$ in the sense of distributions. Our purpose is to derive analogues of the classical asymptotic Birkhoff-type representations for the fundamental system of solutions of the above equation with respect to the spectral parameter as $\lambda \to \infty$ in certain sectors of the complex plane $\mathbb C$. We reduce this equation to a system of first-order equations of the form $$ \mathbf y'=\lambda\rho(x)\mathrm B\mathbf y+\mathrm A(x)\mathbf y+\mathrm C(x,\lambda)\mathbf y, $$ where $\rho$ is a positive function, $\mathrm B$ is a matrix with constant elements, the elements of the matrices $\mathrm A(x)$ and $\mathrm C(x,\lambda)$ are integrable functions, and $\|\mathrm C(x,\lambda)\|_{L_1}=o(1)$ as $\lambda \to \infty$. For systems of this kind, we obtain new results concerning the asymptotic representation of the fundamental solution matrix, which we use to make an asymptotic analysis of the above scalar equations of high order. Bibliography: 44 titles.
Keywords: differential equations with distribution coefficients, asymptotics with respect to the spectral parameter, Birkhoff asymptotics, spectral asymptotics.
@article{SM_2020_211_11_a6,
     author = {A. M. Savchuk and A. A. Shkalikov},
     title = {Asymptotic analysis of solutions of ordinary differential equations with distribution coefficients},
     journal = {Sbornik. Mathematics},
     pages = {1623--1659},
     year = {2020},
     volume = {211},
     number = {11},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2020_211_11_a6/}
}
TY  - JOUR
AU  - A. M. Savchuk
AU  - A. A. Shkalikov
TI  - Asymptotic analysis of solutions of ordinary differential equations with distribution coefficients
JO  - Sbornik. Mathematics
PY  - 2020
SP  - 1623
EP  - 1659
VL  - 211
IS  - 11
UR  - http://geodesic.mathdoc.fr/item/SM_2020_211_11_a6/
LA  - en
ID  - SM_2020_211_11_a6
ER  - 
%0 Journal Article
%A A. M. Savchuk
%A A. A. Shkalikov
%T Asymptotic analysis of solutions of ordinary differential equations with distribution coefficients
%J Sbornik. Mathematics
%D 2020
%P 1623-1659
%V 211
%N 11
%U http://geodesic.mathdoc.fr/item/SM_2020_211_11_a6/
%G en
%F SM_2020_211_11_a6
A. M. Savchuk; A. A. Shkalikov. Asymptotic analysis of solutions of ordinary differential equations with distribution coefficients. Sbornik. Mathematics, Tome 211 (2020) no. 11, pp. 1623-1659. http://geodesic.mathdoc.fr/item/SM_2020_211_11_a6/

[1] G. D. Birkhoff, “On the asymptotic character of the solutions of certain linear differential equations containing a parameter”, Trans. Amer. Math. Soc., 9:2 (1908), 219–231 | DOI | MR | Zbl

[2] G. D. Birkhoff, “Boundary value and expansion problems of ordinary linear differential equations”, Trans. Amer. Math. Soc., 9:4 (1908), 373–395 | DOI | MR | Zbl

[3] A. M. Savchuk, A. A. Shkalikov, “Sturm–Liouville operators with singular potentials”, Math. Notes, 66:6 (1999), 741–753 | DOI | DOI | MR | Zbl

[4] A. M. Savchuk, A. A. Shkalikov, “Sturm–Liouville operators with distribution potentials”, Trans. Moscow Math. Soc., 64 (2003), 143–192 | MR | Zbl

[5] A. A. Vladimirov, “On the convergence of sequences of ordinary differential equations”, Math. Notes, 75:6 (2004), 877–880 | DOI | DOI | MR | Zbl

[6] I. M. Guseinov, R. T. Pashaev, “Ob odnom klasse differentsialnykh operatorov s singulyarnymi koeffitsientami”, Dokl. NAN Azerbaidzhana, 62:1 (2006), 7–10

[7] K. A. Mirzoev, A. A. Shkalikov, “Dvuchlennye differentsialnye operatory s singulyarnym koeffitsientom”, Mezhdunarodnaya konferentsiya “Differentsialnye uravneniya i smezhnye voprosy”, posvyaschennaya 110-i godovschine so dnya rozhdeniya I. G. Petrovskogo: tezisy dokladov, XXIII sovmestnoe zasedanie MMO i sem. im. I. G. Petrovskogo (Moskva, 2011), Izd-vo MGU, M.; OOO “INTUIT.RU”, M., 2011, 274–275

[8] J. Eckhardt, F. Gesztesy, R. Nichols, G. Teschl, “Weyl–Titchmarsh theory for Sturm–Liouville operators with distributional potentials”, Opuscula Math., 33:3 (2013), 467–563 | DOI | MR | Zbl

[9] A. Goriunov, V. Mikhailets, K. Pankrashkin, “Formally self-adjoint quasi-differential operators and boundary-value problems”, Electron. J. Differential Equations, 2013 (2013), 101, 16 pp. | MR | Zbl

[10] K. A. Mirzoev, “Sturm–Liouville operators”, Trans. Moscow Math. Soc., 75 (2014), 281–299 | DOI | MR | Zbl

[11] K. A. Mirzoev, A. A. Shkalikov, “Differential operators of even order with distribution coefficients”, Math. Notes, 99:5 (2016), 779–784 | DOI | DOI | MR | Zbl

[12] E. A. Coddington, N. Levinson, Theory of ordinary differential equations, McGraw-Hill Book Company, Inc., New York–Toronto–London, 1955, xii+429 pp. | MR | Zbl

[13] O. Perron, “Über lineare Differentialgleichungen, bei denen die unabhängig Variable reel ist. I”, J. Reine Angew. Math., 142 (1913), 254–270 ; K. Knopp, O. Perron, II, 143, 25–49 | DOI | MR | Zbl | DOI | MR

[14] Ya. D. Tamarkin, O nekotorykh obschikh zadachakh teorii obyknovennykh lineinykh differentsialnykh uravnenii i o razlozhenii proizvolnykh funktsii v ryady, Tip. M. P. Frolovoi, Petrograd, 1917, xiv+308 pp. | Zbl

[15] G. D. Birkhoff, R. E. Langer, “The boundary problems and developments associated with a system of ordinary differential equations of the first order”, Proc. Amer. Acad. Arts Sci., 58:2 (1923), 51–128 | DOI | Zbl

[16] J. Tamarkin, “Some general problems of the theory of ordinary linear differential equations and expansion of an arbitrary function in series of fundamental functions”, Math. Z., 27:1 (1928), 1–54 | DOI | MR | Zbl

[17] M. A. Naimark, Linear differential operators, v. I, II, Frederick Ungar Publishing Co., New York, 1967, 1968, xiii+144 pp., xv+352 pp. | MR | MR | MR | Zbl | Zbl

[18] A. A. Shkalikov, V. E. Vladykina, “Asymptotics of the solutions of the Sturm–Liouville equation with singular coefficients”, Math. Notes, 98:6 (2015), 891–899 | DOI | DOI | MR | Zbl

[19] V. A. Marchenko, Sturm–Liouville operators and applications, Oper. Theory Adv. Appl., 22, Birkhäuser Verlag, Basel, 1986, xii+367 pp. | DOI | MR | MR | Zbl | Zbl

[20] R. O. Hryniv, Ya. V. Mykytyuk, “Transformation operators for Sturm–Liouville operators with singular potentials”, Math. Phys. Anal. Geom., 7:2 (2004), 119–149 | DOI | MR | Zbl

[21] S. Albeverio, R. O. Hryniv, Ya. V. Mykytyuk, “Inverse spectral problems for Dirac operators with summable potentials”, Russ. J. Math. Phys., 12:4 (2005), 406–423 | MR | Zbl

[22] M. M. Malamud, “Uniqueness questions in inverse problems for systems of differential equations on a finite interval”, Trans. Moscow Math. Soc., 1999, 173–224 | MR | Zbl

[23] A. A. Lunyov, M. M. Malamud, “On the Riesz basis property of root vectors system for $2\times 2$ Dirac type operators”, J. Math. Anal. Appl., 441:1 (2016), 57–103 | DOI | MR | Zbl

[24] A. M. Savchuk, A. A. Shkalikov, “Spectral properties of Dirac operators on $(0,1)$ with summable potentials”, The sixth International conference on differential and functional differential equations. Abstracts (Moscow, 2011), 2011, 63

[25] A. M. Savchuk, A. A. Shkalikov, “Dirac operator with complex-valued summable potential”, Math. Notes, 96:5 (2014), 777–810 | DOI | MR | Zbl

[26] I. M. Rapoport, O nekotorykh asimptoticheskikh metodakh v teorii differentsialnykh uravnenii, Izd-vo AN USSR, Kiev, 1954, 292 pp. | MR

[27] A. I. Vagabov, “On sharpening an asymptotic theorem of Tamarkin”, Differ. Equ., 29:1 (1993), 33–41 | MR | Zbl

[28] V. S. Rykhlov, “Asymptotical formulas for solutions of linear differential systems of the first order”, Results Math., 36:3-4 (1999), 342–353 | DOI | MR | Zbl

[29] A. I. Vagabov, “On the asymptotics with respect to a parameter of solutions of differential systems with coefficients in the class $L_q$”, Differ. Equ., 46:1 (2010), 17–23 | DOI | MR | Zbl

[30] W. Wasow, Asymptotic expansions for ordinary differential equations, Pure Appl. Math., 14, Intersci. Publ. John Wiley Sons, Inc., New York–London–Sydney, 1965, ix+362 pp. | MR | Zbl | Zbl

[31] A. A. Shkalikov, “Boundary problems for ordinary differential equations with parameter in the boundary conditions”, J. Soviet Math., 33 (1986), 1311–1342 | DOI | MR | Zbl

[32] A. A. Lunyov, M. M. Malamud, “On the completeness and Riesz basis property of root subspaces of boundary value problems for first order systems and applications”, J. Spectr. Theory, 5:1 (2015), 17–70 | DOI | MR | Zbl

[33] M. M. Malamud, L. L. Oridoroga, “On the completeness of root subspaces of boundary value problems for first order systems of ordinary differential equations”, J. Funct. Anal., 263:7 (2012), 1939–1980 | DOI | MR | Zbl

[34] A. M. Savchuk, A. A. Shkalikov, “Inverse problems for Sturm–Liouville operators with potentials in Sobolev spaces: uniform stability”, Funct. Anal. Appl., 44:4 (2010), 270–285 | DOI | DOI | MR | Zbl

[35] C. Bennewits, “Spectral asymptotics for Sturm–Liouville equations”, Proc. London Math. Soc. (3), 59:2 (1989), 294–338 | DOI | MR | Zbl

[36] A. Fleige, Spectral theory of indefinite Krein–Feller differential operators, Math. Res., 98, Akademie Verlag, Berlin, 1996, 133 pp. | MR | Zbl

[37] A. Zettl, Sturm–Liouville theory, Math. Surveys Monogr., 121, Amer. Math. Soc., Providence, RI, 2005, xii+328 pp. | DOI | MR | Zbl

[38] J. Behrndt, F. Philipp, C. Trunk, “Bounds on the non-real spectrum of differential operators with indefinite weights”, Math. Ann., 357:1 (2013), 185–213 | DOI | MR | Zbl

[39] A. A. Shkalikov, V. T. Pliev, “Compact perturbations of strongly damped operator pencils”, Math. Notes, 45:2 (1989), 167–174 | DOI | MR | Zbl

[40] R. Kh. Amirov, I. M. Guseinov, “Some classes of Dirac operators with singular potentials”, Differ. Equ., 40:7 (2004), 1066–1068 | DOI | MR | Zbl

[41] A. M. Savchuk, A. A. Shkalikov, Asimptoticheskie formuly dlya fundamentalnoi sistemy reshenii obyknovennykh differentsialnykh uravnenii vysokogo poryadka s koeffitsientami raspredeleniyami, arXiv: 1704.02736V1

[42] F. V. Atkinson, W. N. Everitt, A. Zettl, “Regularization of a Sturm–Liouville problem with an interior singularity using quasi-derivatives”, Differential Integral Equations, 1:2 (1988), 213–221 | MR | Zbl

[43] W. N. Everitt, “A note on linear ordinary quasi-differential equations”, Proc. Roy. Soc. Edinburgh Sect. A, 101:1-2 (1985), 1–14 | DOI | MR | Zbl

[44] V. E. Vladykina, “Asymptotics of fundamental solutions to Sturm–Liouville problem with respect to spectral parameter”, Moscow Univ. Math. Bull., 74:1 (2019), 38–41 | DOI | MR | Zbl