Vanishing properties of $f$-minimal hypersurfaces in a complete smooth metric measure space
Sbornik. Mathematics, Tome 211 (2020) no. 11, pp. 1612-1622 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Let $(N^{n+1},g,e^{-f}dv)$ be a complete smooth metric measure space with $M^{n}$ being a complete noncompact $f$-minimal hypersurface in $N^{n+1}$. In this paper, we extend the classical vanishing theorems for $L^2$-harmonic $1$-forms on a complete minimal hypersurface to a weighted manifold. In addition, we obtain a vanishing result under the assumption that $M^n$ has sufficiently small weighted $L^n$-norm of the second fundamental form on $M^{n}$, which can be regarded as a generalization of a result by Yun and Seo. Bibliography: 26 titles.
@article{SM_2020_211_11_a5,
     author = {R. Mi},
     title = {Vanishing properties of $f$-minimal hypersurfaces in a~complete smooth metric measure space},
     journal = {Sbornik. Mathematics},
     pages = {1612--1622},
     year = {2020},
     volume = {211},
     number = {11},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2020_211_11_a5/}
}
TY  - JOUR
AU  - R. Mi
TI  - Vanishing properties of $f$-minimal hypersurfaces in a complete smooth metric measure space
JO  - Sbornik. Mathematics
PY  - 2020
SP  - 1612
EP  - 1622
VL  - 211
IS  - 11
UR  - http://geodesic.mathdoc.fr/item/SM_2020_211_11_a5/
LA  - en
ID  - SM_2020_211_11_a5
ER  - 
%0 Journal Article
%A R. Mi
%T Vanishing properties of $f$-minimal hypersurfaces in a complete smooth metric measure space
%J Sbornik. Mathematics
%D 2020
%P 1612-1622
%V 211
%N 11
%U http://geodesic.mathdoc.fr/item/SM_2020_211_11_a5/
%G en
%F SM_2020_211_11_a5
R. Mi. Vanishing properties of $f$-minimal hypersurfaces in a complete smooth metric measure space. Sbornik. Mathematics, Tome 211 (2020) no. 11, pp. 1612-1622. http://geodesic.mathdoc.fr/item/SM_2020_211_11_a5/

[1] D. Bakry, M. Émery, “Diffusions hypercontractives”, Seminaire de probabilités XIX 1983/84, Lecture Notes in Math., 1123, Springer, Berlin, 1985, 177–206 | DOI | MR | Zbl

[2] M. Batista, H. Mirandola, “Sobolev and isoperimetric inequalities for submanifolds in weighted ambient spaces”, Ann. Mat. Pura Appl. (4), 194:6 (2015), 1859–1872 | DOI | MR | Zbl

[3] M. P. Cavalcante, H. Mirandola, F. Vitório, “$L^{2}$-harmonic $1$-forms on submanifolds with finite total curvature”, J. Geom. Anal., 24:1 (2014), 205–222 | DOI | MR | Zbl

[4] Huai-Dong Cao, Ying Shen, Shunhui Zhu, “The structure of stable minimal hypersurfaces in $\mathbb{R}^{n+1}$”, Math. Res. Lett., 4:5 (1997), 637–644 | DOI | MR | Zbl

[5] Xu Cheng, Tito Mejia, Detang Zhou, “Simons-type equation for $f$-minimal hypersurfaces and applications”, J. Geom. Anal., 25:4 (2015), 2667–2686 | DOI | MR | Zbl

[6] Xu Cheng, Tito Mejia, Detang Zhou, “Stability and compactness for complete $f$-minimal surfaces”, Trans. Amer. Math. Soc., 367:6 (2015), 4041–4059 | DOI | MR | Zbl

[7] M. do Carmo, C. K. Peng, “Stable complete minimal surfaces in $R^3$ are planes”, Bull. Amer. Math. Soc. (N.S.), 1:6 (1979), 903–906 | DOI | MR | Zbl

[8] Nguyen Thac Dung, Keomkyo Seo, “Vanishing theorems for $L^{2}$ harmonic $1$-forms on complete submanifolds in a Riemanian manifold”, J. Math. Anal. Appl., 423:2 (2015), 1594–1609 | DOI | MR | Zbl

[9] D. Impera, M. Rimoldi, “Stability properties and topology at infinity of $f$-minimal hypersurfaces”, Geom. Dedicata, 178 (2015), 21–47 | DOI | MR | Zbl

[10] P. Li, R. Schoen, “$L^{p}$ and mean value properties of subharmonic functions on Riemannian manifolds”, Acta Math., 153:3-4 (1984), 279–301 | DOI | MR | Zbl

[11] A. Lichnerowicz, “Variétés riemanniennes à tenseur $C$ non négatif”, C. R. Acad. Sci. Paris Sér. A-B, 271 (1970), A650–A653 | MR | Zbl

[12] Gand Liu, “Stable weighted minimal surfaces in manifolds with non-negative Bakry–Emery Ricci tensor”, Comm. Anal. Geom., 21:5 (2013), 1061–1079 | DOI | MR | Zbl

[13] J. Lott, C. Villani, “Ricci curvature for metric-measure spaces via optimal transport”, Ann. of Math. (2), 169:3 (2009), 903–991 | DOI | MR | Zbl

[14] J. Lott, “Some geometric properties of the Bakry–Émery–Ricci tensor”, Comment. Math. Helv., 78:4 (2003), 865–883 | DOI | MR | Zbl

[15] R. Miyaoka, “$L^2$ harmonic $1$-forms on a complete stable minimal hypersurface”, Geometry and global analysis (Sendai, 1993), Tohoku Univ., Sendai, 1993, 289–293 | MR | Zbl

[16] F. Morgan, “Manifolds with density”, Notices Amer. Math. Soc., 52:8 (2005), 853–858 | MR | Zbl

[17] Keomkyo Seo, “$L^{2}$ harmonic $1$-forms on minimal submanifolds in hyperbolic space”, J. Math. Anal. Appl., 371:2 (2010), 546–551 | DOI | MR | Zbl

[18] Keomkyo Seo, “Rigidity of minimal submanifolds in hyperbolic space”, Arch. Math. (Basel), 94:2 (2010), 173–181 | DOI | MR | Zbl

[19] Keomkyo Seo, “$L^{p}$ harmonic $1$-forms and first eigenvalue of a stable minimal hypersurface”, Pacific J. Math., 268:1 (2014), 205–229 | DOI | MR | Zbl

[20] K.-T. Sturm, “On the geometry of metric measure spaces. I”, Acta. Math., 196:1 (2006), 65–131 | DOI | MR | Zbl

[21] K.-T. Sturm, “On the geometry of metric measure spaces. II”, Acta. Math., 196:1 (2006), 133–177 | DOI | MR | Zbl

[22] M. Vieira, “Harmonic forms on manifolds with non-negative Bakry–Émery–Ricci curvature”, Arch. Math. (Basel), 101:6 (2013), 581–590 | DOI | MR | Zbl

[23] Guofang Wei, W. Wylie, “Comparison geometry for the Bakry–Emery–Ricci tensor”, J. Differential Geom., 83:2 (2009), 377–405 | DOI | MR | Zbl

[24] Shing-Tung Yau, “Some function-theoretic properties of complete Riemannian manifold and their applications to geometry”, Indiana Univ. Math. J., 25:7 (1976), 659–670 | DOI | MR | Zbl

[25] Gabjin Yun, “Total scalar curvature and $L^{2}$ harmonic $1$-forms on a minimal hypersuface in Euclidean space”, Geom. Dedicata, 89 (2002), 135–141 | DOI | MR | Zbl

[26] Gabjin Yun, Keomkyo Seo, “Weighted volume growth and vanishing properties of $f$-minimal hypersurfaces in a weighted manifold”, Nonlinear Anal., 180 (2019), 264–283 | DOI | MR | Zbl