Mots-clés : domain of univalence.
@article{SM_2020_211_11_a4,
author = {O. S. Kudryavtseva and A. P. Solodov},
title = {Asymptotically sharp two-sided estimate for domains of univalence of holomorphic self-maps of a~disc with an invariant diameter},
journal = {Sbornik. Mathematics},
pages = {1592--1611},
year = {2020},
volume = {211},
number = {11},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SM_2020_211_11_a4/}
}
TY - JOUR AU - O. S. Kudryavtseva AU - A. P. Solodov TI - Asymptotically sharp two-sided estimate for domains of univalence of holomorphic self-maps of a disc with an invariant diameter JO - Sbornik. Mathematics PY - 2020 SP - 1592 EP - 1611 VL - 211 IS - 11 UR - http://geodesic.mathdoc.fr/item/SM_2020_211_11_a4/ LA - en ID - SM_2020_211_11_a4 ER -
%0 Journal Article %A O. S. Kudryavtseva %A A. P. Solodov %T Asymptotically sharp two-sided estimate for domains of univalence of holomorphic self-maps of a disc with an invariant diameter %J Sbornik. Mathematics %D 2020 %P 1592-1611 %V 211 %N 11 %U http://geodesic.mathdoc.fr/item/SM_2020_211_11_a4/ %G en %F SM_2020_211_11_a4
O. S. Kudryavtseva; A. P. Solodov. Asymptotically sharp two-sided estimate for domains of univalence of holomorphic self-maps of a disc with an invariant diameter. Sbornik. Mathematics, Tome 211 (2020) no. 11, pp. 1592-1611. http://geodesic.mathdoc.fr/item/SM_2020_211_11_a4/
[1] G. M. Goluzin, Geometric theory of functions of a complex variable, Transl. Math. Monogr., 26, Amer. Math. Soc., Providence, RI, 1969, vi+676 pp. | MR | MR | Zbl | Zbl
[2] G. Valiron, Fonctions analytiques, Presses Universitaires de France, Paris, 1954, 236 pp. | MR | Zbl
[3] L. V. Ahlfors, Conformal invariants: topics in geometric function theory, McGraw-Hill Series in Higher Mathematics, McGraw-Hill Book Co., New York–Düsseldorf–Johannesburg, 1973, ix+157 pp. | MR | Zbl
[4] F. G. Avkhadiev, L. A. Aksent'ev, “The main results on sufficient conditions for an analytic function to be schlicht”, Russian Math. Surveys, 30:4 (1975), 1–63 | DOI | MR | Zbl
[5] F. G. Avkhadiev, L. A. Aksent'ev, A. M. Elizarov, “Sufficient conditions for the finite-valence of analytic functions and their applications”, J. Soviet Math., 49:1 (1990), 715–799 | DOI | MR | Zbl
[6] E. Landau, “Der Picard–Schottkysche Satz und die Blochsche Konstante”, Sitzungsber. Preuß. Akad. Wiss., Phys.-Math. Kl., 1926 (1926), 467–474 | Zbl
[7] J. Becker, Ch. Pommerenke, “Angular derivatives for holomorphic self-maps of the disk”, Comput. Methods Funct. Theory, 17:3 (2017), 487–497 | DOI | MR | Zbl
[8] O. S. Kudryavtseva, A. P. Solodov, “Two-sided estimates for domains of univalence for classes of holomorphic self-maps of a disc with two fixed points”, Sb. Math., 210:7 (2019), 1019–1042 | DOI | MR | Zbl
[9] V. V. Goryainov, “Holomorphic mappings of the unit disc into itself with two fixed points”, Sb. Math., 208:3 (2017), 360–376 | DOI | DOI | MR | Zbl
[10] A. P. Solodov, “Strengthening of Landau's theorem for holomorphic self-mappings of a disk with fixed points”, Math. Notes, 108:4 (2020), 626–628 | DOI | DOI | MR
[11] V. V. Goryainov, “Holomorphic mappings of a strip into itself with bounded distortion at infinity”, Proc. Steklov Inst. Math., 298:1 (2017), 94–103 | DOI | DOI | MR | Zbl
[12] O. S. Kudryavtseva, “Holomorphic endomorphisms of the unit disk with invariant diameter and bounded distortion”, Russian Math. (Iz. VUZ), 59:8 (2015), 41–51 | DOI | MR | Zbl
[13] O. S. Kudryavtseva, “Analog of the Löwner–Kufarev equation for the semigroup of conformal mappings of the disk into itself with fixed points and invariant diameter”, Math. Notes, 102:2 (2017), 289–293 | DOI | DOI | MR | Zbl
[14] O. S. Kudryavtseva, A. P. Solodov, “Two-sided estimate of univalence domains for holomorphic mappings of the unit disk into itself keeping its diameter”, Russian Math. (Iz. VUZ), 63:7 (2019), 80–83 | DOI | DOI | Zbl
[15] V. V. Prasolov, Polynomials, Algorithms Comput. Math., 11, Springer-Verlag, Berlin, 2004, xiv+301 pp. | DOI | MR | Zbl
[16] P. L. Duren, Univalent functions, Grundlehren Math. Wiss., 259, Springer-Verlag, New York, 1983, xiv+382 pp. | MR | Zbl