Asymptotically sharp two-sided estimate for domains of univalence of holomorphic self-maps of a disc with an invariant diameter
Sbornik. Mathematics, Tome 211 (2020) no. 11, pp. 1592-1611 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Holomorphic self-maps of the unit disc with two fixed diametrically opposite boundary points and an invariant diameter are investigated. Asymptotically sharp estimates for domains of univalence are obtained for functions in such classes, which depend on the product of the angular derivatives at the boundary fixed points. Bibliography: 16 titles.
Keywords: holomorphic map, fixed points, angular derivative
Mots-clés : domain of univalence.
@article{SM_2020_211_11_a4,
     author = {O. S. Kudryavtseva and A. P. Solodov},
     title = {Asymptotically sharp two-sided estimate for domains of univalence of holomorphic self-maps of a~disc with an invariant diameter},
     journal = {Sbornik. Mathematics},
     pages = {1592--1611},
     year = {2020},
     volume = {211},
     number = {11},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2020_211_11_a4/}
}
TY  - JOUR
AU  - O. S. Kudryavtseva
AU  - A. P. Solodov
TI  - Asymptotically sharp two-sided estimate for domains of univalence of holomorphic self-maps of a disc with an invariant diameter
JO  - Sbornik. Mathematics
PY  - 2020
SP  - 1592
EP  - 1611
VL  - 211
IS  - 11
UR  - http://geodesic.mathdoc.fr/item/SM_2020_211_11_a4/
LA  - en
ID  - SM_2020_211_11_a4
ER  - 
%0 Journal Article
%A O. S. Kudryavtseva
%A A. P. Solodov
%T Asymptotically sharp two-sided estimate for domains of univalence of holomorphic self-maps of a disc with an invariant diameter
%J Sbornik. Mathematics
%D 2020
%P 1592-1611
%V 211
%N 11
%U http://geodesic.mathdoc.fr/item/SM_2020_211_11_a4/
%G en
%F SM_2020_211_11_a4
O. S. Kudryavtseva; A. P. Solodov. Asymptotically sharp two-sided estimate for domains of univalence of holomorphic self-maps of a disc with an invariant diameter. Sbornik. Mathematics, Tome 211 (2020) no. 11, pp. 1592-1611. http://geodesic.mathdoc.fr/item/SM_2020_211_11_a4/

[1] G. M. Goluzin, Geometric theory of functions of a complex variable, Transl. Math. Monogr., 26, Amer. Math. Soc., Providence, RI, 1969, vi+676 pp. | MR | MR | Zbl | Zbl

[2] G. Valiron, Fonctions analytiques, Presses Universitaires de France, Paris, 1954, 236 pp. | MR | Zbl

[3] L. V. Ahlfors, Conformal invariants: topics in geometric function theory, McGraw-Hill Series in Higher Mathematics, McGraw-Hill Book Co., New York–Düsseldorf–Johannesburg, 1973, ix+157 pp. | MR | Zbl

[4] F. G. Avkhadiev, L. A. Aksent'ev, “The main results on sufficient conditions for an analytic function to be schlicht”, Russian Math. Surveys, 30:4 (1975), 1–63 | DOI | MR | Zbl

[5] F. G. Avkhadiev, L. A. Aksent'ev, A. M. Elizarov, “Sufficient conditions for the finite-valence of analytic functions and their applications”, J. Soviet Math., 49:1 (1990), 715–799 | DOI | MR | Zbl

[6] E. Landau, “Der Picard–Schottkysche Satz und die Blochsche Konstante”, Sitzungsber. Preuß. Akad. Wiss., Phys.-Math. Kl., 1926 (1926), 467–474 | Zbl

[7] J. Becker, Ch. Pommerenke, “Angular derivatives for holomorphic self-maps of the disk”, Comput. Methods Funct. Theory, 17:3 (2017), 487–497 | DOI | MR | Zbl

[8] O. S. Kudryavtseva, A. P. Solodov, “Two-sided estimates for domains of univalence for classes of holomorphic self-maps of a disc with two fixed points”, Sb. Math., 210:7 (2019), 1019–1042 | DOI | MR | Zbl

[9] V. V. Goryainov, “Holomorphic mappings of the unit disc into itself with two fixed points”, Sb. Math., 208:3 (2017), 360–376 | DOI | DOI | MR | Zbl

[10] A. P. Solodov, “Strengthening of Landau's theorem for holomorphic self-mappings of a disk with fixed points”, Math. Notes, 108:4 (2020), 626–628 | DOI | DOI | MR

[11] V. V. Goryainov, “Holomorphic mappings of a strip into itself with bounded distortion at infinity”, Proc. Steklov Inst. Math., 298:1 (2017), 94–103 | DOI | DOI | MR | Zbl

[12] O. S. Kudryavtseva, “Holomorphic endomorphisms of the unit disk with invariant diameter and bounded distortion”, Russian Math. (Iz. VUZ), 59:8 (2015), 41–51 | DOI | MR | Zbl

[13] O. S. Kudryavtseva, “Analog of the Löwner–Kufarev equation for the semigroup of conformal mappings of the disk into itself with fixed points and invariant diameter”, Math. Notes, 102:2 (2017), 289–293 | DOI | DOI | MR | Zbl

[14] O. S. Kudryavtseva, A. P. Solodov, “Two-sided estimate of univalence domains for holomorphic mappings of the unit disk into itself keeping its diameter”, Russian Math. (Iz. VUZ), 63:7 (2019), 80–83 | DOI | DOI | Zbl

[15] V. V. Prasolov, Polynomials, Algorithms Comput. Math., 11, Springer-Verlag, Berlin, 2004, xiv+301 pp. | DOI | MR | Zbl

[16] P. L. Duren, Univalent functions, Grundlehren Math. Wiss., 259, Springer-Verlag, New York, 1983, xiv+382 pp. | MR | Zbl